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総説

Potential Use of Deep Learning-Based Pose Estimation in Sports Biomechanics
ディープラーニングを用いた骨格推定のスポーツバイオメカニクスでの活用可能性

Hiroki Ozaki1), Minoru Matsumoto1), Hideyuki Nagao1),2), Toshiharu Yokozawa1)

尾崎宏樹 1), 松本実 1), 長尾秀行 1),2), 横澤俊治 1)

Abstract : Pose estimation using deep learning (DL) is expected to solve traditional problems faced 
by sports biomechanics, including limitations resulting from the application of reflective markers. 
For sports biomechanists to correctly utilize these pose estimation techniques, there is a need to 
elucidate the estimation and learning procedures used in pose estimation as well as to consider how 
to utilize them. Therefore, we aimed to review recently published major pose estimation models and 
to examine the availability of pose estimation in sports biomechanics. We observed that the main 
models were developed for simultaneous estimation of multiple persons, but none of the these were 
designed to rigorously estimate center of joint position which is mainly required in sports 
biomechanics. Further, all training datasets for these models were digitized positions that appeared 
as the joint centers of people in “in-the-wild” videos; moreover, these workers were non-professionals 
termed as “crowd-workers”. Therefore, regardless of the model quality, the dataset accuracy may be 
a bottleneck that impedes the estimation accuracy required in sports biomechanics. All the metrics 
used to verify the accuracy involved verification of the average estimation results of multiple joint 
points across the entire frame or multiple frames. Therefore, even with a high overall estimation 
accuracy, the accuracy of the estimated positions of the individual joints may be low. Taken together, 
it is difficult to utilize and calculate kinematic variables based on joint positions obtained through 
pose estimation. However, the existing pose estimation may help sports biomechanists calculate the 
movement periodization and number. To expand the utility of pose estimation in sports biomechanics, 
sports biomechanists should be actively involved in the development of pose estimation models and 
datasets.
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Ⅰ．Introduction
1 . Athletes and sports biomechanics 

Athletes require technical and physical training to 

enhance their athletic performance. Sports biome-

chanists examine the factors that limit performance 

enhancement among athletes and suggest means of 

improving appropriate motions. To identify factors 

limiting athletic performance, sports biomechanists 

analyze the athlete’s athletic performance (hereafter 

referred to as performance analysis) or motion (hereaf-

ter referred to as motion analysis). In the performance 

analysis, they examine key variables, including the 

distance traveled per section and the travel speed, to 

identify the factors limiting athletic performance. In 

the motion analysis, several fundamental motions, 

including running, jumping, and throwing, as well as 

competition-specific motions that influence athletic 

performance, may also be analyzed to examine lim-

iting factors in each motion. Sports biomechanists 

generally begin the analysis process by considering 

each body part as a rigid segment. Accordingly, the 

initial step is creating the athlete’s body model, with 

rigid body segments being linked by joints (the so-

called link-segment model). In this initial step, biome-

chanists must use accurate joint position data. This is 

because slight differences in the joint center position 

can significantly affect biomechanical variables, in-

cluding segment velocity, joint force, and moment, 

which are calculated based on the joint center position. 

For example, Reinschmidt et al. compared bone pins 

and skin markers and showed that measurement er-

rors occurring in hip adduction abduction and internal 

rotation external rotation affect the process of motion 

improvement 40). In addition, Leardini et al mentioned 

that a hip joint center misplacement of 30 mm in the 

anterior–posterior direction generated a mean error 

on the flexion/extension moment of about 22%27). 

This error also has a significant impact when making 

suggestions to improve movements. Moreover, those 

kinds of errors can be a problem when comparing the 

kinetics data from different test conditions or those 

presented by different research laboratories which use 

different alignment procedures4). Therefore, sports bio-

mechanists typically first mark anatomical landmarks 

(bone ends near a joint of interest whose position can 

be reproducibly identified from the skin) to accurate-

ly estimate the joint center position by palpation51). 

The required anatomical landmarks are marked using 

reflective spherical or semi-spherical markers; more-

over, their 2D or 3D positions are used as cues to cal-

culate the joint center positions.

2 . Limitations in performance and motion analysis 

methodologies.

The aforementioned method is a powerful process 

for accurately determining the joint center position; 

however, it has several limiting factors. For example, 

application of reflective markers is difficult during 

sporting activities35). Additionally, placing markers on 

the body areas sensitive to manipulation, including 

fingertips in baseball pitching, may interfere with the 

athlete’s motion. Generally, the digitization method 

(cricking the joint center position in a video clip using 

specific software and providing information as the 

joint center position) and the Mo-cap method (identi-

fying reflective marker positions using a 3D-motion 

analysis system) are used to calculate the positions of 

reflective markers. However, these methods also have 

several limitations. The digitization method involves 

risks such as human errors in identifying the marker 

position due to manual digitization. Additionally, 

digitization requires a significant amount of time. 

The Mo-cap method also has limitations, including 

the expensive Mo-cap system and the fact that it can 

only analyze motions within a limited space. Motion 

capture using IMUs can solve some of these problems. 

However, this method also has limitations, including 

vibration of the sensor itself and data drift. Therefore, 

this would not be a substitute for digitization or Mo-

cap15).
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3 . Accuracy required for pose estimation using deep 

learning in sports biomechanics.

Recently, there has been rapid development of deep 

learning (hereinafter referred to as DL) in various 

fields. This is especially true in the image processing 

field, where new technologies such as security sys-

tems based on face recognition and medical assistance 

systems based on X-ray images have been created. 

In sports biomechanics, there have been attempts to 

utilize DL, including a table tennis rally detection 

algorithm9) and ball-tracking technologies16), 41). Addi-

tionally, another notable technique is pose estimation. 

Since the development of DeepPose47), various DL-

based pose estimation methods have been described. 

These DL-based pose estimations could solve the lim-

itations impeding joint center position identification by 

sports biomechanists. In sports biomechanics, there are 

various ways of accurately identifying the joint center 

position. In the imaging method, great care is taken 

to ensure the following: reflective markers attached to 

the individual’s anatomical landmarks appear on the 

image with high resolution, the camera is positioned 

to extensively minimize occlusion of reflective mark-

ers, and the appropriate imaging speed is selected to 

match the movement speed especially when capturing 

fast and dynamic movements51). Further, trained bio-

mechanists usually digitize the center position of the 

reflective markers in the image and multiple people 

can digitize the reflective markers within the same 

trial and average the results. Another idea is suppress-

ing the vibration of reflective markers caused by skin 

movement. The skin is shaken when the target motion 

involves impact, including sprinting or hitting, with 

this effect being mixed into the joint center position 

information as noise. There are various measures pro-

posed to at least minimally reduce this influence, in-

cluding the use of cluster markers7) or the symmetrical 

center of the segment’s rotation34). On the other hand, 

existing models and datasets are considered to be de-

signed for pose estimation in daily life. Therefore, it is 

unclear whether existing models can adequately esti-

mate high-speed, acrobatic movements and rotational 

movements around the long axis, such as the supina-

tion and pronation of the forearm seen in baseball and 

other sports. In addition, while sports biomechanics 

requires accurate positions of target joints in order to 

suggest improvements in movement, the development 

of pose estimation to date is thought to be envisioned 

as a contribution to computer industries including vid-

eo game annotation11). Therefore, for pose estimation 

to be applied in sports biomechanics, it is necessary to 

determine how to accurately obtain joint positions, and 

whether these accurately meets the standards in sports 

biomechanists.

4 . Study objectives

In this context, to consider the use of DL-based 

pose estimation in sports biomechanics, there is a need 

to determine whether the method of obtaining the joint 

center position in the pose estimation model using DL 

allows the appropriate accuracy required in sports bio-

mechanics. The accuracy of the joint center position 

information contained in the dataset used as superviso-

ry data significantly affects the accuracy of joint center 

position estimation through pose estimation43). There 

have been a number of review papers on pose estima-

tion4), 45), 49). These papers summarized the DL-based 

pose estimation models, the datasets of those models, 

and the accuracy validation of the last decade, but they 

did not address the potential uses of pose estimation in 

sports biomechanics. Colyer et al. conducted a narra-

tive review of DL-based pose estimation models from 

a sports biomechanics perspective11). However, they 

mainly discussed 3D pose estimation without mark-

ers and did not review their datasets. Although many 

reviews have been published, it still remains unclear 

whether the methods currently used to validate the 

accuracy of 2D, and 3D pose estimation models that 

can be used for sports biomechanists. Therefore, the 

purpose of this study was to review recent posture esti-
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mation models, datasets, and their accuracy validation 

to determine their applicability to posture estimation, 

particularly in sports biomechanics.

Ⅱ．Literature Review Procedures
We conducted a comprehensive literature review on 

(1) DL-based pose estimation models that may be rel-

evant to sports biomechanics, as well as (2) the applied 

teacher datasets and (3) accuracy evaluation metrics 

in this study. For (1), papers accepted to the IEEE 

Computer Society Conference on Computer Vision 

and Pattern Recognition, the top conference for human 

pose estimaton49) that were published after 2014 and 

cited at least 50 times according to Google Scholar as 

of June 1, 2022, were included in this study. However, 

since the most recent papers may have been excluded 

due to citation counts, this review also included the 

most recent review papers published after 2019 that 

were presented as models incorporating new methods. 

Therefore, (2) Teacher datasets and (3) accuracy eval-

uation were covered by investigating citations used in 

studies selected in (1). 

1 . Definition of terms

The words used in this article are defined as follows:

Pose estimation: A technique for pose estimation 

of a person or animal based on images or videos. 

Although techniques for pose estimation have been 

developed since before the introduction of machine 

learning techniques, we defined them as techniques 

using DL.

Model: In this review, this term is synonymous with 

machine learning models. The model is a concrete 

calculation process that, upon reception of input, eval-

uates the input’s content produces an output value.

Dataset: A set of data collected for a specific pur-

pose. In this review, this term specifically refers to a 

collection of data in which images or videos, which 

serve as supervisory data in DL, and labels are collect-

ed as a set.

2 . Recent trends in pose estimation models, datasets, 

and accuracy verification methods

1 )  Pose estimation models

a )  Recent trends in pose estimation models

Emergence of DeepPose

Since the early 2010s, there has been rapid devel-

opment of DL given the spread of the Internet, the 

reduced computation time by general-purpose GPU, 

and the development of important algorithms such 

as convolutional neural networks (CNNs). After the 

development of DeepPose, various pose estimation 

models using DL have been proposed (Table 1).

Trends in the development of pose estimation mod-

els after DeepPose

DeepPose47) was the first pose estimation model 

using DL, but it was only slightly more accurate than 

non-DL-based models. Tompson et al.46) reported that 

heat maps could effectively improve the estimation ac-

curacy of pose estimation. They greatly improved the 

accuracy of joint position estimation from DeepPose 

using heat maps. Since then, heat-map-based models 

have been proposed. Other methods for improving 

accuracy using heat maps in stages have been devel-

oped50), 36), with further improvement in the accuracy of 

the pose estimation. These achievements have allowed 

the simultaneous detection of both single and multiple 

persons. DeepCut37) and DeeperCut18) were developed 

to initially detect only a person, followed by estima-

tion of the individual’s joints from a video showing 

multiple persons, which improved the speed of the 

pose estimation process for multiple persons. DeepCut 

has improved the method for estimating the whole-

body skeleton from joint positions, and has improved 

the estimation accuracy of the lower body in particular 

from the method of Tompson et al46).

DeepCut also achieves highly accurate joint posi-

tion estimation in a short computation time. In these 

models, information regarding the pose estimation was 

not passed between frames; therefore, in case of mul-
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tiple detected persons, they would be swapped every 

time the frame changed. To address this issue, several 

methods have been proposed to simultaneously esti-

mate and track multiple persons12), 17). These methods 

not only improved the accuracy of pose estimation 

for multiple persons, but also improved the accuracy 

of joint estimation for a single person. For example, 

the RMPE proposed by Fang et al12) outperformed the 

estimation accuracy of DeeperCut in head, shoulder, 

elbow, wrist, hip, knee and ankle segments. In these 

proposed models, the chin position, which is relative-

ly easy for the model to identify, is first estimated, 

followed by estimation of the joint center position 

of the whole body is estimated from the positional 

information (top-down method). Subsequently, these 

models can quickly detect and track the person. How-

ever, there remained issues with the top-down method, 

including the fact that pose estimation cannot be per-

formed upon failure of the recognition of a person and 

the misidentification of other persons’ joints as those 

of the target person. Another limitation is the compu-

tational cost, which is positively correlated with the 

number of people. To address these challenges, Xiu 

et al.52) designed a method for reducing non-skeletal 

noise in images known as PoseFlow that addressed 

fast motion, occlusion, and motion blurring using 

cross-frame detection. Li et al. also devised a model 

that first identifies and detects the range of the person 

within the image; subsequently, it considers the person 

to be the same even if body parts are outside the range 

(CrowdPose28)). These models improved the accuracy 

of pose estimation of densely packed people in sports, 

which was previously difficult to estimate. Here, they 

adopted a method of estimating joint center positions 

Table 1: Main Pose estimation models using deep learning and their overview. Note that NN indicates that the model 
is not specifically named in the paper. Listed from oldest to most recent.

Model
Multi
person

Tracking 3D Dataset

DeepPose47) - - - FLIC, LSP, LSP Extended

NN46) - - - FLIC, LSP Extended

Convolutional Pose - - - FLIC, LSP, MPII

Machines50)

NN36) - - - FLIC, MPII

DeepCut37) ✓ - - LSP, LSP Extended, MPII

DeeperCut18) ✓ - - LSP, LSP Extended, MPII

OpenPose8) ✓ - - MPII Multi-person, MS COCO keypoints

ArtTrack17) ✓ ✓ - MPII Multi-person

RMPE12) ✓ - - MPII Multi-person, MS COCO keypoints

NN10) - - ✓ LSP, Human3.6M

PoseFlow52) ✓ ✓ - MPII Multi-person, PoseTrack

DensePose14) ✓ - ✓ MS COCO keypoints, Densepose COCO

Human Mesh Recovery24) - - ✓ LSP, LSP-extended, MPII, MS COCO keypoints, 

Human3.6M, MPI- INF-3DHP

CrowdPose28) ✓ - - MS COCO keypoints, CrowdPose, J-HMDB

NN39) ✓ ✓ - MPII, MS COCO keypoints, PoseTrack

NN53) - - ✓ Human3.6M, HumanEva

NN20) ✓ - ✓ Human3.6M, LSP, LSP-extended, MPII, 
MPI- INF-3DHP, MS COCO and more

NN29) ✓ - ✓ Human3.6M, MPI- INF-3DHP and more

VIBE25) ✓ - ✓ Human3.6M, MPI- INF-3DHP



Ozaki et al.

172

from the entire image (the so-called bottom-up meth-

od). By accounting for the orientation from one joint 

to another adjacent joint, they solved the problem 

of segments not being connected well, which was a 

limitation of the conventional bottom-up method, and 

solved the problem of the aforementioned top-down 

method. Besides these, there are some models8), 39) that 

allow highly accurate multi-person pose estimation. 

Since 2017, multiple 3D pose estimation algorithms 

have been reported in the computer science field10), 24), 

53). Numerous computer scientists have proposed new 

innovations for pose estimation in 3D include estimat-

ing 3D coordinates of joint points through regression 

with image input to CNN, retrieving 3D postures cor-

responding to 2D postures from a library, and fitting a 

human model. Güler et al.14) proposed a novel method 

for mapping pixels of the human body in an image to 

a 3D human surface. However, it only qualitatively 

verified that the posture estimation by this method was 

highly accurate regardless of the presence of multiple 

persons, postures, costumes, scales, and occlusions, 

and did not compare the accuracy of this method with 

other models. The 3D pose estimation created a new 

challenge. Specifically, the overlap of people, depth 

perception, and anterior-posterior relationships could 

not be correctly estimated, which were not as problem-

atic in 2D pose estimation. To address this issue, there 

have been numerous recent reports regarding a tech-

nique called human shape reconstruction, which solves 

the problem of inconsistencies in the anterior-posterior 

relationships of body parts when identifying multiple 

overlapping people and estimating their skeletons. Ji-

ang et al.21) proposed a model that accounts for the cor-

rect estimation of the anterior-posterior relationships 

of multiple people detected in 2D images (depth order-

ing-aware loss), which improved the overlap problem 

in 3D pose estimation. Their complete model allowed 

them to generate more coherent reconstructions. How-

ever, the improvement in estimation accuracy relative 

to previous studies was marginal. Research in this area 

is expected to accelerate as pose estimation becomes 

more 3D. One of the problems with 3D pose estima-

tion was the ambiguity mainly caused by occlusion 

when projecting a 2D pose into 3D23), 33). To reduce 

this ambiguity, multi-view images and video sequenc-

es input were proposed. Liang et al. 29) improved 

the accuracy in joint position estimation by 3D pose 

estimation assuming Virtual Try On for both single 

and multi-person by simultaneously inputting images 

from three to four different orientations. While many 

attempts at video input have been reported, Kocabas 

et al. 25) specifically improved the accuracy of posture 

estimation for a single person by propagating posture 

information over time and introducing self-attention 

in the discriminator to focus on the important temporal 

structure of human motion. 

b )  Summary of trends in pose estimation models

Since the development of DeepPose, the accuracy 

of pose estimation has been improved by innovative 

ideas such as heat maps, bottom-up methods, bot-

tom-down methods, and cross-frame detection. Ac-

cordingly, the performance of pose estimation models 

has been improved through simultaneous estimation of 

multiple persons. Additionally, pose estimation in 3D 

has become popular. In the 3D pose estimation, multi-

view image and video sequence input contributed to 

the improvement of 3D pose estimation accuracy in 

order to reduce the ambiguity that had been an issue 

when projecting 2D poses into 3D. However, although 

3D methods contribute to multi-person identification, 

they do not significantly improve the accuracy of joint 

center position estimation. Further, there have been no 

reports regarding the development of the models that 

were designed to rigorously estimate center of joint 

position. This indicates that the development motiva-

tion of computer scientists does not necessarily match 

the needs of sports biomechanists.
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2 )  Datasets

Since the early 2000s, there have been several re-

ports on datasets with names (labels) of objects and ac-

tions in images and videos. Among the factors that fa-

cilitated the rapid development of pose estimation was 

the progress in the development of teacher datasets. In 

this section, we review papers on the datasets used in 

the models reviewed in SectionⅡ-2 - 1) (Table2).

a )  Datasets containing sports actions

The Leeds Sports Pose Dataset (LSP22)) is a dataset 

containing whole-body joint center position informa-

tion, including the head, in 2,000 images. It digitizes 

the joint center positions in images collected from 

Flicker social media. The specific digitization method 

was not specified. The dataset included sports images 

of athletes in track and field, badminton, baseball, 

soccer, tennis, and volleyball. The Leeds Sports Pose 

Extended Training Dataset (LSP Extended23)), which 

was released the following year, added images of ath-

letes in parkour, gymnastics, and other activities not 

included in the LSP. Digitization was performed using 

a part-time work-sharing system provided by Amazon 

Mechanical Turk (AMT1)). Frames Labeled in Cinema 

(FLIC42)) disclosed the positional information of the 

left and right shoulders, elbows, wrists, hips, knees, 

and ankles of movie images and the persons in it, 

with digitization using the AMT. The Joint-annotated 

Human Motion Data Base (J-HMDB)20) contains 21 

movements, 3,838 frame images, and digitized joint 

Table 2: The datasets used for Pose estimation models reviewed in this study and its characteristics. Listed from 
oldest to most recent. 

Dataset Sports
Multi
Person

3D Key Points Data size Source Annotation

LSP22) ✓ - - full body Joints, 
head

2,000 annotated images Flicker Unknown

HumanEva44) - - ✓ full body Joints, 
head

over 80,000 calibrated 
images, 4 persons, 6 actions

- Motion capture

LSP 
Extended23)

✓ - - full body joints, 
head

10,000 annotated images LSP,  Flicker AMT

FLIC42) - - - upper body 
joints

5,003 annotated images popular 
Movies

AMT

J-HMDB20) ✓ - - full body joints, 
face,  belly

928 videos, 33,183 
annotated images

HMDB5126), 
Internet

AMT

Human3.6M19) - - ✓ full body Joints, 
head

3.6 million 3D annotated 
images, 11 persons, 17 
actions

- Motion capture

MS COCO 
keypoints 30)

- ✓ - full body joints, 
eyes, nose, ears

200,000 images, 250,000 
persons

Flicker AMT

MPII3) - ✓ ✓ full body joints, 
eyes, nose

25,000 images, over 40,000 
persons

YouTube AMT

MPI-INF-
3DHP33)

- - ✓ full body Joints, 
head

over 1.3 million 3D 
annotated images, 8 
persons, 8 actions

- AMT

PoseTrack2) - ✓ - full body joints, 
head, nose, 
neck

1,356 videos, 46,000 
annotated images

MPⅡ Motion capture

DensePose-
COCO14)

- ✓ ✓ full body Joints, 
head

more than 5 million 
annotated 
correspondences, 50,000 
persons

MS COCO 
keypoints

Playment
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center positions collected from the Internet, including 

golf swings, ball kicks, and baseball swings. 

b )  3D datasets

There are several published datasets for 3D pose 

estimation. HumanEva44) published a dataset using 

VICON (VICON Inc., UK), which is a motion capture 

system commonly used for motion analysis in sports 

biomechanics, as a gold standard for quantitative eval-

uation of pose estimation models. The dataset contains 

seven videos of four individuals performing actions, 

including walking, jogging, and gesturing. The po-

sition where the markers are attached is chosen to 

create a human figure using stick pictures rather than 

identifying the joint center. Moreover, Human3.6M19) 

used a motion capture system to capture 11 profes-

sional actors within ≈ 3.6 million video frames. A total 

of 17 scenarios (discussion, smoking, taking a photo, 

talking on the phone, etc.) were performed in a labo-

ratory environment. Since they were measured using 

a motion capture system, the 3D marker positions are 

considered accurate. However, it seems that they were 

not intended to calculate joint center positions with 

the accuracy required in sports biomechanics because 

the markers were attached to ruse clothing where the 

joints were not visible.

c )  Other datasets

Microsoft Common Objects in Context (MS COCO 

keypoints30)) is a large dataset of digitized eyes, noses, 

ears, and joints of the whole body, with additional 

object detection, segmentation, and image captioning. 

It is comprised of 330,000 images, with five captions 

per image (thing categories such as a person, bicycle, 

and elephant) and a subset of 91 stuff categories (grass, 

sky, and road). Furthermore, sports scenes are includ-

ed; however, rather than categorizing sports, the data-

set includes sports scenes as among the landscapes. 

It does not describe the image sources or digitization 

method. The MPII Human Pose Dataset (MPII3)) also 

contains skeletal data of more than 40,000 people with 

25,000 database images of joints of the whole body, 

eyes, and noses, with YouTube as a source. Digitiza-

tion was performed using AMT. PoseTrack2) involves 

more detailed digitization of the MPII Human Pose 

Dataset and organizes the dataset as a new benchmark 

for evaluating pose estimation models. Over 66,000 

images from 550 videos were extracted and organized 

for training, validation, and testing. Digitization was 

performed using an online service similar to AMT 

called Playment6).

d )  Summary of dataset features

Taken together, datasets that include sports images 

as a single category include LSP, LSP Extended, and 

J-HMDB; contrastingly, the other datasets only include 

scenarios in which people happen to be participating in 

sports. Most datasets were digitized from “in-the-wild” 

images that are publicly available online, including so-

cial media. This is a reasonable solution since there is 

no need to re-film the images; however, since the im-

ages were not filmed for digitization, occlusion or low 

resolution is not considered to improve the digitization 

accuracy. Two articles did not mention the digitization 

method; however, most of them used part-time work-

shares from AMT and Playment. Dataset producers can 

use “crowd-workers” registered on these workshare 

sites to perform digitization. Crowd-workers are paid 

based on the number of working man-hours. These 

sites can have requirements for selecting individuals 

who can handle the task, for example, a master’s de-

gree. At the same site, the dataset producer can provide 

special instructions for workers. Indeed, Andriluka et 

al.3) stated that “We pre-select AMT workers based 

on a qualification task and then maintain data quality 

by manually inspecting the annotated data.” Care was 

taken to maintain the digitization accuracy. However, 

the articles did not describe any confirmation of the 

digitization results. Additionally, given the images 

published in each dataset, there were numerous cases 
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where the digitization of the joint center position was 

performed on clothes or on a point clearly off the joint 

center. In the HUMANEVA and Human3.6M datasets, 

which include 3D joint center positions, a motion 

capture system was used to calculate the joint center 

positon and take. However, there was a low accuracy 

of joint position estimation since reflective markers 

were applied to the clothes; moreover, it is unsuitable 

as a dataset for accurate estimation of joint positions 

in sports activities since it only deals with movements 

that can be performed within the range where the 

motion capture system is installed. Finally, since all 

3D datasets were taken in the lab, there was a lack of 

diversity of the background environment, appearance 

of the person’s clothes, and their postures11). 

3 )  Verification method of pose estimation models

a )  Evaluation indices used for verification

This section summarizes the characteristics of the 

indicators for accuracy verification of the aforemen-

tioned pose estimation models and datasets. The ac-

curacy verification methods included Object Keypoint 

Similarity (OKS), Mean Average Precision (mAP), 

Percentage of Correct Part (PCP), Percentage of Cor-

rect Key-points (PCK), Multiple Object Tracking 

(MOTA), and Mean Per Joint Position Error (MPJPE). 

Object Keypoint Similarity13) 

It represents the average similarity between the es-

timated and correct coordinates for the digitized joint 

center position. This index includes the visibility of 

the joint center positions (unlabeled, labeled but not 

visible, labeled and visible) and the evaluation criteria 

(keypoint similarity) regarding the distance between 

the correct and estimated positions of each joint center 

position. The OKS uses the average of multiple key-

point similarities over the entire person. However, it is 

unsuitable for evaluating the entire algorithm in case 

there are multiple persons.

Mean Average Precision54)

The mAP is a measure of the degree to which the 

boxes of all objects to be detected overlap with the 

expected boxes. It is sometimes referred to as OKS-

based mAP since it is based on OKS. mAP score is 

calculated by taking the mean average precision over 

all classes and/or overall IoU (intersection over union) 

thresholds.

Percentage of Correct Part3)

The PCP is an index that determines whether a body 

segment has been detected and evaluates the detection 

rate. Detection is judged based on whether the length 

of the line connecting both ends of the estimated seg-

ment is within the allowable range for the correct seg-

ment length. Since the segment length is used as a cri-

terion, if the segment length in the video is short, the 

number of pixels that comprise a segment is reduced. 

Therefore, the effect of a small error becomes rela-

tively larger and the detection criterion also becomes 

relatively strict. To address this problem, the average 

of all segment lengths can be used as the standard for 

evaluation.

Percentage of Correct Key-points54)

The PCK judges the estimated joint center position 

as correct when the distance between the estimated 

and correct coordinates of the joint center position 

is within the allowable range. The PCK is an index 

where the evaluation value is the percentage of correct 

estimation. There are variations according to the appli-

cation, including using the PCKh when the threshold 

is determined based on the head size (length of the 

diagonal line of the bounding rectangle of the head).

Multiple Object Tracking5)

The MOTA is a measure of the accuracy of object 

tracking of key points within multiple frames. It eval-

uates the accuracy of object recognition using the total 

number of false and missed positives divided by the 
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number of recognized objects. The feature of this indi-

cator is that the number of times that the IDs waved on 

the objects are accidentally switched when they inter-

sect is accounted for in the evaluation.

Mean Per Joint Position Error19)

The MPJPE is used to verify the accuracy of the 

pose estimation in 3D. It is calculated by averaging 

the distance between the estimated and correct coor-

dinates across all joint points and data. In the case of 

algorithms using a single camera, the estimated and 

correct poses are sometimes done by performing rigid 

alignment, which involves translating or rotating the 

estimated pose before evaluation. Therefore, for be-

tween-study comparisons of evaluation values, care 

must be taken to ensure that there are no differences in 

the evaluation procedure.

b )   Summary of the evaluation metrics used for veri-

fication

All six aforementioned evaluation metrics were used 

to determine the error between the joint center posi-

tion estimated by the pose estimation model and the 

correct data provided by the dataset. All these metrics 

verified the accuracy of the entire image or the average 

of multiple images. Therefore, it is an excellent index 

for verifying the accuracy of the entire image or video 

and the average accuracy of the pose estimation for 

an entire person. Additionally, it is an effective index 

for discussing the accuracy of different models since 

it allows objective model evaluation using a common 

dataset and evaluation index. However, these evalua-

tion metrics cannot individually verify the estimation 

accuracy of the individual joint center positions in a 

person, or a certain object point at a certain moment, 

which is a minimum requirement in sports biome-

chanics. Vafadar et al.48) calculated the segment length 

based on the positions of the elbow, wrist, hip, knee, 

and ankle joints and compared CNN-based human 

pose estimation and marker-based motion analysis 

system. They also verified the accuracy of each joint 

by using Mean absolute error (MAE). Using MAE al-

lowed them to determine which joint positions affected 

the segment length calculation results. Vafader et al. 

stated that the accuracy was often exacerbated when 

projecting a 2D pose into 3D48). In this case, the first 

step might be to carefully conduct accuracy verifica-

tion in 2D. The MAE was not used in the model papers 

in this review but it is possible that it was overlooked 

due to the method used to collect the papers. However, 

the MAE is considered to be useful not only in 3D but 

also in 2D in sports biomechanics, because it at least 

enables verification of the accuracy of each joint. 

Ⅲ．Potential applications in sports biomechanics
1 . Current status and issues of pose estimation mod-

els, datasets, and their evaluation indices

Here, we summarize the issues that need to be re-

solved to allow the application of pose estimation in 

sports biomechanics.

1 )  Current of pose estimation models

First, numerous 2D pose estimation models using 

DL have been developed since the establishment of 

DeepPose. Particularly in the last decade, the tech-

nology in pose estimation has been revolutionized 

by the excellent work of computer scientists. The 

accuracy of joint position estimation has also shown 

great improvement when using the criteria of common 

evaluation metrics. However, the development trend 

has shifted from the accurate estimation of joint center 

positions to multi-person technologies. Accordingly, 

there is a gap between the technology required by 

sports biomechanists and the direction of technology 

development in this field. In sports biomechanics, the 

focus is often on a single person; therefore, analyzing 

multiple people is not important. Instead, an important 

aspect is the precision of common positions of a single 

person. The pose estimation methods described in this 

review directly estimate the joint center positions of 



Potential Use of Deep Learning-Based Pose Estimation in Sports Biomechanics

177

a person in an image; contrastingly, biomechanical 

methods indirectly identify the joint centers using 

anatomical landmarks as cues. Therefore, the joint 

positions shown by the pose estimation model are in 

“reasonable” positions based on the teacher data; how-

ever, they lack anatomical rigor. This is because the 

pose estimation model directly estimates the joint cen-

ter position, unlike a sports biomechanist who marks 

anatomical landmarks by palpation and calculates the 

joint center position based on these landmarks51). If the 

pose estimation model could, for example, estimate 

the ankle joint center position by relying on ankle ir-

regularities, the estimation accuracy would be equiva-

lent to that required by sports biomechanics. There are 

various techniques for 3D pose estimation; however, 

in most cases, 2D pose estimation is first performed, 

followed by 3D estimation. Therefore, the issues expe-

rienced in 2D pose estimation exist in 3D pose estima-

tion.

2 )  Challenges in using existing datasets for sports 

biomechanics

Those 2D datasets used “in-the-wild” videos and 

images, with crowd-workers often digitizing the joint 

center positions; additionally, the development was 

not aimed at performance or motion analysis. These 

factors could limit the utility of existing datasets for 

sports biomechanics. Using social media images, 

the dataset producer could create a reasonably large 

amount of teacher data. However, these images did 

not undergo digitization; therefore, even images with 

unclear joint positions were considered as digitized to 

“reasonable” positions. In addition, when digitization 

was performed using online services, there is a major 

issue regarding the quality of the crowd-workers. Fur-

thermore, these digitization tasks were not designed 

for use in sports science. There were many cases where 

the joint center position was estimated from the cloth-

ing or the joint position was clearly off. It is believed 

that more accurate data sets with clothing will be need-

ed. In order to accurately determine the joint center 

from above the clothing, there is the way to take mea-

sures such as, for example, first applying double-sided 

tape to the anatomical landmarks and the clothing, and 

then applying a reflective marker on top of the tape. 

However, unfortunately, none of the current datasets 

use this method. Another challenge is that the datasets 

in 3D were captured using a motion capture system, 

with less data being included in the dataset than the 

dataset in 2D created using social media. In addition, 

since these datasets only include actions that could be 

performed within the view angle of the motion capture 

camera, the diversity of the background environment 

and appearance of the person’s clothes, posture, etc. 

was relatively low. This may impair the generalization 

performance of the trained model. To address this 

problem, various learning methods have been pro-

posed in recent years, including unsupervised learning, 

semi-supervised learning, self-supervised learning, 

and weakly supervised learning55). As aforementioned, 

regardless of the model accuracy, the digitization accu-

racy of the joint center position cannot be sufficiently 

improved due to the use of existing datasets in the 

training phase. For the same reason, sports biomecha-

nists need to have detailed knowledge of the datasets 

used in the markerless motion capture functions that 

are rapidly becoming popular, such as what sources 

were used and how they were digitized.

3 )  Possibility of using existing verification indices in 

sports biomechanics

This review suggested that existing indices veri-

fy the accuracy over the entire video or the average 

accuracy of the pose estimation for an entire person, 

moreover, it is difficult to estimate the accuracy of 

individual joint center position estimation using ex-

isting evaluation indices. In sports biomechanics, it is 

necessary to estimate the exact joint center position 

for each joint rather than the overall accuracy of the 

joint position in the image. In fact, several papers have 
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been reported on the accuracy verification of marker-

less motion capture for use in sports biomechanics11). 

However, most of them used joint position error as an 

indicator. The validation indicators identified in this 

study are not of great significance to sports biomech-

anists, and their use is therefore considered to be low. 

On the other hand, these metrics still might be useful 

in areas where more semantic poses can be made with-

out concern for biological or physical constraints, such 

as human-machine interaction. Nonetheless, when 

simultaneously evaluating the movements of multiple 

persons as a whole (e.g., the synchronization degree of 

group movements in artistic swimming), the existing 

evaluation indices may still be sufficient.

2 . The current scope of the application of pose esti-

mation models in sports biomechanics

Based on these issues, we consider the scope of ap-

plication of existing pose estimation models to sports 

biomechanics. Sports biomechanists can reasonably 

use these models for recognizing body part location in-

cluding the termination of movements, which often in-

volves identifying the frame where a certain body part 

has reached a certain position. For example, Chaud-

hury et al.9) used a phasing model in table tennis game 

analysis to estimate the start and end of a rally scene 

based on the players’ movements. Similarly, pose 

estimation can be used to record behavior. Sports bio-

mechanists often monitor an athlete’s behavior during 

training to estimate the load on the body, for example, 

with respect to injury prevention. In this case, the 

athlete’s movements are usually recorded from start 

to finish, with subsequent visual determination of the 

duration and frequency of activities. Pose estimation 

models can perform such a complicated task at a low 

computational cost. In addition, existing models and 

evaluation indices can evaluate the overall movements 

in group activities. 

Depth information is theoretically the most difficult 

to obtain when calculating 3D position coordinates 

from images. Therefore, the utmost care should be tak-

en when dealing with depth information in 3D pose. 

Nakano et al.35) used a sports biomechanical calibration 

method when calculating the 3D position coordinates 

of joints from OpenPose8). Therefore, it is necessary to 

use a method similar to theirs when obtaining 3D joint 

positions by 3D pose estimation. Future development 

of multi-view images may solve this problem.

3 . What sports biomechanists should do to expand 

the application of pose estimation models in sports 

biomechanics

Here, we suggest measures that could be taken by 

sports biomechanists to expand the utility of pose 

estimation in sports biomechanics. First, as aforemen-

tioned, the current motivation of computer scientists 

has a different direction than that of movement sci-

ence, including sports biomechanics, with respect 

to model development. DeepLabCut31) is a practical 

model for movement scientists since it is motivated 

by the needs of neuroscientists to understand animal 

behavior. This model allows movement scientists to 

estimate the behavior of mice and Drosophila with the 

same accuracy as human digitization. Sports biome-

chanists should also be proactively involved in the de-

velopment of technological innovations for improving 

the accuracy of joint position estimation for a single 

person. Another major challenge of pose estimation in 

sports biomechanics is the insufficient learning with 

existing datasets. Biomechanists should prepare pur-

poseful teacher data. Motion capture systems, which 

are widely used in sports biomechanics, can overwrite 

videos with marker information. When using this tech-

nology to examine the human body, the video should 

be recorded; further, information including the posi-

tional coordinates of the marker and video should be 

shared among scientists, which will facilitate the con-

struction of datasets specific to sports biomechanics. 

However, since the reflection marker is shown in the 

video that serves as the teacher data, the model may 
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use information regarding the position of the reflection 

marker to estimate the joint center position11). Further 

research is warranted to examine the effect of marker 

images on model accuracy when training models using 

images containing reflective markers. Additionally, 

there is a need to validate data from systems that can 

calculate anatomical landmark positions without using 

markers, including a highly accurate 3D surface anal-

ysis system38), as the gold standard. Regarding model 

validation, existing evaluation methods are insufficient 

for determining the exact joint center positions of a 

single person in sports biomechanics. Finally, when 

considering the use of pose estimation in sports bio-

mechanics, it is desirable to apply physical quantities 

(position, velocity, acceleration, etc.) used by sports 

biomechanists as indicators for evaluation.

Ⅳ．Conclusion
This study sought to clarify the utility of DL-based 

pose estimation in solving the problems of tradition-

al methods in sports biomechanics. We observed a 

dramatic improvement in the performance of pose 

estimation models; however, the direction of develop-

ment does not meet the needs of movement scientists 

such as sports biomechanists. Additionally, currently 

available datasets may contain data with inaccurately 

digitized joint center positions. The evaluation met-

rics used for these models were based on the average 

evaluation of the entire frame or video. Therefore, for 

sports biomechanists seeking to determine the exact 

position of individual joint centers, the utility scope 

of pose estimation may be limited to movement peri-

odization and counting the number of exercises. This 

is not a systematic study because not all papers on all 

models were reviewed, but this does not significantly 

affect the results of this study. This is not only because 

the accuracy of existing posture estimation models has 

not been evaluated to the standards required by sports 

biomechanics, but also because of a lack of appropriate 

datasets. Computer scientists are exploring new pos-

sibilities in pose and, if sports biomechanists wish to 

utilize this, they should carefully consider the scope of 

its application. To facilitate the use of pose estimation 

in sports biomechanics, sports biomechanists should 

be actively involved in the development of models and 

datasets; further, the models should be evaluated using 

physical quantities used by sports biomechanists.
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