

特集 ハイパフォーマンススポーツ・カンファレンス特別セミナー特集

コロナ禍で得た教訓：ハイパフォーマンススポーツアスリートの ディトレーニングとリトレーニング

Lessons from COVID-19 Pandemic: Detraining and Retraining in High Performance Athletes

山崎和也¹⁾, 壱倉花¹⁾, 山下大地¹⁾, Spiering Barry A.²⁾, Tous-Fajardo Julio³⁾,
Burke Louise⁴⁾, Balague Gloria⁵⁾, Buchheit Martin^{6), 7)},

Sandbakk Øyvind⁸⁾, 山岸卓樹¹⁾, Mujika Iñigo^{9), 10)}
Kazuya Yamazaki¹⁾, Hana Tsubokura¹⁾, Daichi Yamashita¹⁾, Barry A. Spiering²⁾,
Julio Tous-Fajardo³⁾, Louise Burke⁴⁾, Gloria Balague⁵⁾, Martin Buchheit^{6), 7)},
Øyvind Sandbakk⁸⁾, Takaki Yamagishi¹⁾, Iñigo Mujika^{9), 10)}

キーワード：新型コロナウイルス感染症, トレーニング中断, エキセントリックオーバーロード, 心理戦略, 栄養戦略

I. はじめに

2022年3月15日から31日まで、日本スポーツ振興センター ハイパフォーマンススポーツセンター(HPSC)主催による「ハイパフォーマンススポーツシンポジウム—コロナ禍で得た教訓：ハイパフォーマンススポーツアスリートのディトレーニングとリトレーニング—」がオンライン形式で開催された。新型コロナウイルス感染症拡大は、多くのアスリートの強化活動に制限をもたらした。トレーニング施設の閉鎖や練習場の利用制限、感染・濃厚接触による隔離措置、国際大会に伴う隔離措置などが、トレーニング不足を引き起こした。このようなトレーニング中断によるパフォーマンスの変化や、コロナ禍でパフォーマン

スを維持するための工夫について議論することを目的として、運動生理学、栄養学、心理学など様々な観点から情報提供を行った。本稿では、各講演内容を簡潔にまとめたものであり、コロナ禍におけるスポーツ活動の制限と対策を記すとともに、今後、予期せぬパンデミックが発生した際に役立つことを期待する。

II. 強靭なアスリートの育成：コロナ禍で得た教訓 (Mujika Iñigo)

まず、本講演は概要紹介から始まる。主要なトピックの1つは、トレーニング可逆性の原則である。トレーニングを中断すると、得られた適応が部分的または完全に失われ、パフォーマンスが低

¹⁾国立スポーツ科学センター, ²⁾U. S. Army Research Institute of Environmental Medicine (USARIEM), ³⁾Tensegrity Performance, ⁴⁾Australian Catholic University, ⁵⁾University of Illinois Chicago, ⁶⁾Lille OSC, ⁷⁾Kitman Labs, ⁸⁾UiT The Arctic University of Norway, ⁹⁾University of the Basque Country, ¹⁰⁾Universidad Finis Terrae

¹⁾Japan Institute of Sports Sciences, ²⁾U. S. Army Research Institute of Environmental Medicine (USARIEM), ³⁾Tensegrity Performance, ⁴⁾Australian Catholic University, ⁵⁾University of Illinois Chicago, ⁶⁾Lille OSC, ⁷⁾Kitman Labs, ⁸⁾UiT The Arctic University of Norway, ⁹⁾University of the Basque Country, ¹⁰⁾Universidad Finis Terrae

E-mail : kazuya.yamazaki@jpnsport.go.jp

下する。これはディトレーニングと定義されている⁴¹⁾。ディトレーニングは、トレーニングの中止または減少によって引き起こされ、特に心肺機能や代謝機能、筋力に悪影響を及ぼす。短期間のトレーニングの中止でも、最大酸素摂取量($\dot{V}O_{2\text{max}}$)の低下、筋量の減少、代謝機能の悪化などが生じることが多い。したがって、パンデミック中のアスリートに対して、トレーニングを完全に中止するのではなく、強度を保ちながらトレーニング量を減らすことが重要である。トレーニングの頻度や時間が減少しても、強度を維持することで $\dot{V}O_{2\text{max}}$ や筋力をある程度保つことができる³¹⁾。特に、高強度インターバルトレーニング(HIIT)やスプリントを取り入れることで、トレーニング量の減少によるパフォーマンス低下を最小限に抑える方法が提案できる^{37), 51)}。また、心理的要因も重要な役割を果たすことを指摘し、イメージトレーニング(想像上の筋収縮)を用いることで、筋力の低下を抑える可能性がある²⁰⁾。

最後に、負荷の定量化と適応のモニタリングは重要であり、トレーニング負荷を評価するための様々な手法がある^{30), 45), 54)}。トレーニングの進行状況を適切に追跡することで、疲労やパフォーマンスの変化を理解し、アスリートのトレーニング効果を最大化することができる。

III. コロナ禍における身体パフォーマンスの維持 (Spiering Barry A.)

本講演では、持久力や筋力の維持に関する最小限のトレーニング負荷について、著者らのレビュー論文⁵⁰⁾を基に説明する。特に、コロナ禍において隔離期間中の持久力や筋力の維持は重要であり、日本のように狭いホテルの部屋といった制限された環境では、最低限のトレーニング方法を知ることが極めて有用である。

持久性能力の維持について、非アスリートを対象とした研究では、トレーニングによって獲得した $\dot{V}O_{2\text{max}}$ は、トレーニングの頻度や時間を減らしても低下しないが、トレーニングの強度を下げると低下することが明らかにされている^{31), 32), 33)}。

一方で、アスリートの場合、週2回のトレーニングでは持久性能力を維持するには不十分であり^{19), 25)}、週に4回程度のセッションが必要とされている^{24), 43)}。また、従来の持久性トレーニングと短時間で完了する HIIT では、持久性能力の向上効果が同等であるという報告もある¹⁵⁾。これらの知見は、トレーニング環境や利用可能な時間に応じて柔軟にプランを選択する必要性を示唆している。

筋力と筋量の維持について、非アスリートを対象とした研究では、週1回の筋力トレーニングでも維持が可能だが、強度をできる限り高く維持する必要がある²⁾。ロックダウン中のアスリートを対象とした観察研究では、頻度は週3回、トレーニング量は1エクササイズあたり4~5セットが有効であると報告されている⁴³⁾。これらの結果は、筋力や筋量の維持においても強度を可能な限り高く保つことが重要であることを示している。

さらに、隔離中にエクササイズ器具が利用できない場合には、いくつかの実践的な対策が役立つ。例えば、自重エクササイズを両脚や両手ではなく片脚や片手で行うことで強度を高める方法が有効である⁴³⁾。プライオメトリックエクササイズも効果的である。そして、格闘技のように腕の曲げ伸ばしが重要な競技では、無負荷でも全可動域を全力で動かすことで、筋力を維持できると報告されている¹⁸⁾。さらに、運動イメージも筋力維持に有効である⁴²⁾。コロナ禍においても、プロバスケットボール選手の筋力と筋パワーが運動イメージトレーニングによって維持されていた²⁰⁾。加圧トレーニングも適切な安全管理のもとで行えば有効である可能性が示唆されている。

しかしながら、これらのほとんどの研究は非アスリートを対象としており、ハイパフォーマンスアスリートにそのまま適用できるかは不明である。ハイパフォーマンスアスリートがパフォーマンスを維持するためには、より多くのトレーニング量が必要となる可能性がある。このような知見を基に、隔離期間中でも効果的にトレーニングを行うための方策を検討することが求められる。

IV. プロサッカーチームにおけるコロナ禍のトレーニング：エキセントリックオーバーロードと障害予防 (Tous-Fajardo Julio)

新型コロナウイルス感染症の影響で、多くのアスリートがトレーニング施設にアクセスできず、自宅でトレーニングを行うことを余儀なくされた。著者 (Tous-Fajardo Julio) は、ロックダウンの時期はイタリアのサッカーチームのトレーニングを指導していた。研究者ではないが、これまでフライホイールトレーニングについての研究にも携わってきた。本講義では、エキセントリック過負荷トレーニングの研究成果と、コロナ禍において実施した具体的なトレーニング方法について解説する。

Hyldahl らのレビューでは、エキセントリックトレーニングによる過負荷が迅速な効果と持続的な効果をもたらすことが確認されている³⁴⁾。フライホイールを用いたエキセントリック過負荷トレーニングと従来型のトレーニングを比較した結果、特に 45° の方向転換テストにおいて、機能的エキセントリックトレーニングを実施したグループに大幅な改善が見られた³⁵⁾。さらに、エキセントリックトレーニングをより三次元的に行った場合、鉛直方向のみのトレーニングと比較して、総合的なトレーニング効果が向上した²⁸⁾。加えて、異なる力のベクトルを適用したエキセントリックトレーニングは、バスケットボール選手の機能的パフォーマンスや左右差を改善させ、特に水平方向の跳能力が顕著に向上了した²⁷⁾。これらの結果から、エキセントリック過負荷トレーニングがアスリートの方向転換能力やスピード、ジャンプ力の向上に効果的であり、抵抗の方向による特定の機能的適応を発展させる上で重要な役割を果たす可能性が示された。

ラグビー選手を対象とした研究では、ボールを使用した競技特異的な課題にフライホイールの抵抗を組み合わせることで、選手の動きの多様性が増し、柔軟性が高まることが示された⁴⁰⁾。また別の研究では、同様の制約条件下での 6 週間のトレーニング期間中に動作速度が有意に増加し、動

きのバリエーションも向上した²³⁾。これらの結果から、競技特異的な制約を取り入れたエキセントリック過負荷トレーニングがアスリートの動作の多様性や速度適応に寄与することが明らかとなった。

コロナ禍においては、ベッドレストの研究知見を基に、トレーニング中断による身体への悪影響について選手に情報提供し、レジスタンスバンド等を配布した。家庭で準備可能な様々な抵抗を活用したトレーニング方法を紹介し、オンラインでのグループトレーニングや個人トレーニングによってこれまで培ってきた適応を維持できるよう、毎週段階的にトレーニングを組んだ。

最後に、ロックダウン中にはコーチとして新たなスキル習得が求められた。例えば、オンライントレーニングの実施、選手のモチベーションを高めるトレーニング環境の整備や、時間効率の良い機材の準備が必要となった。さらに、理学療法士との連携により、選手の健康管理とパフォーマンス向上を図ることが重要であった。選手のパフォーマンスを最大限に引き出すために、新たな技術やトレーニング器具を活用することが求められる。

V. コロナ禍における栄養戦略 (Burke Louise)

新型コロナウイルス感染症拡大によるパンデミックは、アスリートのトレーニング環境や栄養摂取に大きな影響を与えている。本講演は、著者 (Burke Louise) 自身の厳しいロックダウンおよび第 32 回オリンピック競技大会 (2020/ 東京) における隔離生活での経験を交えつつ、アスリートが隔離された状況でどのように栄養を管理し、トレーニング目標をサポートできるかについて焦点を当てた。

栄養は、パフォーマンスや長期的な健康増進だけでなく、個人の文化的アイデンティティ、社会交流、そして食の享受といった多様な側面にも関連している。隔離の影響はアスリートごとに異なり、限定された空間、トレーニング施設の不足、食事選択の制限といった課題があり、多様な関係

者との連携が不可欠である。隔離中のアスリートの栄養ニーズは以下の5つの主要概念に分類できる。

1. エネルギー必要量の調節：隔離環境におけるトレーニングは、空間的制約や適切な機器の不足から、強度と持続時間が制限され、結果としてエネルギー消費量の減少を招く。したがって、エネルギー、特に糖質摂取量の調整が不可欠となる。フードプレート³³⁾を用いることで、トレーニング量に応じた主要栄養素の摂取比率を視覚的に理解し、実践することが可能となる。
2. 質の高いトレーニングのための栄養サポート：疲労を軽減し、パフォーマンスを向上させるために、様々な栄養戦略がある。高強度セッション前後の適切な栄養補給、セッション中のスポーツドリンクやジェル、簡便な食品による糖質補給、水分補給、身体冷却³⁴⁾、そしてメントールを用いた体感温度調節³⁵⁾等、様々な方法がある。
3. トレーニング適応の最大化：トレーニング刺激への最適な生理学的適応を促すためには、十分な量のタンパク質摂取が重要となる³⁶⁾。毎食後、トレーニング後、就寝前にも20~40gのタンパク質を摂取することが推奨される²⁶⁾。施設提供の食事ではタンパク質不足に陥りやすく、追加の補給が必要である。伝統的な日本の朝食には、魚、卵、豆腐などの高品質なタンパク質が豊富に含まれている点も注目に値する。
4. 低グリコーゲントレーニング戦略（トレーニングロー）：隔離環境下におけるトレーニング量の減少に対応するために、「トレーニングロー」戦略、すなわち意図的に低グリコーゲン状態でトレーニングを行う方法がある¹⁶⁾。低グリコーゲン状態でのトレーニングは、筋細胞内シグナル伝達経路を活性化し、トレーニング効果を増強することが示唆されている^{35), 44)}。炭水化物を制限して就寝する「スリープロー」サイクル³⁹⁾は、少なくともトレーニング経験

の浅いアスリートにおいて有効である可能性がある。

5. 心理的サポート：隔離に伴う社会的孤立、倦怠感、ストレスは、過食や不適切な食品選択のリスクを高める²⁹⁾。規則的な生活習慣の維持、食品の量と質の管理、オンラインツールを用いた社会交流、そして必要に応じた専門家による心理的サポートが重要である。

最後に、隔離期間を新しいスキルや知識を学ぶ機会としてポジティブに捉え、前向きな姿勢を保ちながら食事やトレーニングを工夫し、アスリートが目標を達成できるようサポートすることも重要である。

VI. コロナ禍における心理戦略 (Balague Gloria)

本講演では、新型コロナウイルス感染症によるパンデミック下におけるアスリートの心理的戦略、特にレジリエンスと認知的柔軟性の重要性について紹介した。パンデミック中の困難を乗り越え、トレーニングを継続するために、アスリートとコーチはレジリエンスと認知的柔軟性に焦点を当てる必要があるだろう。

パンデミックにより、アスリートは予期せぬ困難、制約、不確実性に直面した。この経験から得られた最大の教訓は、変化への適応と、新たな解決策を生み出す能力の重要性である。具体的には、困難を克服する「レジリエンス」と、不確実性の中でも目標達成に向けて柔軟に対応する「認知的柔軟性」が不可欠となる。また、チーム、コーチ、家族によるサポートシステムの重要性も改めて示した。そして、コントロールできない外部要因に囚われるのではなく、自身の思考、感情、行動といった制御または管理可能な要素に意識を集中させるべきである。

レジリエンスとは、困難や逆境に直面しても、それを跳ね返し、目標を追求し続ける力である。レジリエンスの構成要素として「メンタルタフネス」「グリット」「成長マインドセット」の3つが挙げられる。メンタルタフネスは、競技環境でのプレッシャーに対処し、競争を恐れずに挑戦する

力である。グリットは長期的な目標に向かって忍耐強く取り組む姿勢であり、成功の重要な予測因子である²¹⁾。失敗を恐れず挑戦する勇気、細部への意識、目標達成への強い意志、楽観的な姿勢がグリットを構成する要素となる。成長マインドセットとは、知性や才能は努力によって伸ばすことができる信じる考え方である²²⁾。固定マインドセットのように才能の限界を信じるのではなく、努力と学習を通じて成長できるという信念を持つことが、困難な状況を乗り越える力となる。

認知的柔軟性とは、状況の変化に応じて思考や行動を柔軟に切り替え、新たな解決策を見出す力である。これは、固定観念にとらわれず、多様な視点を取り入れることで培われる。パンデミックのような不確実な状況下では、計画通りにいかないことも多く、従来のやり方に固執するのではなく、状況に合わせて柔軟に対応する必要がある。多くのアスリートやコーチはルーティンを好むが、ルーティンは予期せぬ変化に対応できるよう柔軟であるべきであり、そのためには手法や利用可能な資源を創造的に活用することが求められる。

レジリエンスと認知的柔軟性を高めるための具体的な戦略について、アスリートは、自己認識の向上、効果的な思考法のトレーニング（ポジティブ思考だけでなく、状況に適した思考）、イメージトレーニングの活用、アクティブラスト、多様な休息方法を実践することができる。コーチは、リフレーミング（状況の捉え方を変える）、支配と影響のモデルの指導（コントロールできるものに集中）、創造的な解決策の奨励、明確な目標設定のサポート、肯定的なフィードバック、練習環境の工夫（困難な状況の再現）を実践できる。これらの資質は、必要性が生じる前からトレーニング設計に組み込んでおくべきである。

隔離期間は、必ずしも目標達成を阻むものではなく、新たなスキル習得や自己成長の機会となる。レジリエンスと認知的柔軟性を強化する心理的戦略を効果的に活用することで、アスリートは困難な状況を乗り越え、成長し、目標を達成で

きるだろう。

VII. シーズン制スポーツにおけるフィールドテストを用いた身体パフォーマンスの評価（Buchheit Martin）

本講演では、シーズン制スポーツにおけるフィールドテストを用いた身体パフォーマンス評価の実践的な方法論について紹介した。そこでもう、著者（Buchheit Martin）自身の経験、研究成果、様々な現場での実践に基づき、容易に実施可能かつ実用的なフィールドテストの活用法を、3段階のモニタリングフレームワークを通して解説した。

トレーニングへの全体的な反応を評価するためには、シンプルな質問票やアプリを用いて、疲労度、フレッシュさ、ウェルネスを評価する。特に多くの選手を管理する場合に有効である。高地トレーニングや試合¹¹⁾、クリスマス休暇⁹⁾といった様々な状況におけるウェルネススコアの変化の実例がある。

実際のフィットネスレベルを測定することに集中したい場合、フィールドでは30-15インターミッティントテスト⁴⁾を実施することができる。しかし最大努力でのテストは頻繁に実施できないため、標準化された最大下強度の運動（例：一定速度でのランニング）時の心拍数を測定することで、簡便にフィットネスレベルを評価できる^{1), 12)}。気温や湿度による影響³⁸⁾についても言及し、心拍数の変化は持久性能力の変化を反映することを示した^{13), 14)}。下肢の疲労や効率の評価として、Global Positioning System (GPS) デバイスに搭載された加速度計を用いたスティフネス評価法がある^{7), 8)}。また、ジャンプテスト¹⁷⁾や股関節内転筋力テスト¹⁰⁾も実用的である。これは、特別なテストを実施することなく、練習や試合中のデータから神経筋の疲労度を評価できるという利点がある。

さらに、効果的なパフォーマンスマニタリングを行うためには、単一の指標のみに頼るのではなく、複数の指標を組み合わせてアスリートの状態

を包括的に評価することが不可欠である。例えば心拍変動 (HRV) は、安静時の心拍数の自然な変動を測定する生理学的指標であり、自律神経系の活動を反映している。しかし、HRV の解釈は複雑であり、トレーニング強度や種類、テーパリングの時期など、様々な要因によって影響を受ける。フィットネスレベルの向上に伴い HRV が増加する傾向が見られる⁶⁾が、高強度トレーニングを実施すると、フィットネスレベルの向上にもかかわらず、交感神経の活性化により HRV が低下する⁴⁶⁾。さらに、ウルトラトレイルレースの例で示したように、HRV の回復と筋肉痛のピークは必ずしも一致しない⁵⁾。アスリートの真の回復状態を把握するためには、HRV だけでなく、他の指標も併せて考慮する必要がある。

モニタリングツールやプロトコルは、利用可能なリソースやスポーツの種類、アスリート個々の特性に合わせて適切に選択する必要がある。最も重要なのは、一貫して測定を継続することである。高度な技術を用いた断続的な測定よりも、シンプルな方法で継続的に測定を行うことで、アスリートのベースラインを正確に把握し、わずかな変化も早期に発見することができる。トレーニングが制限される状況下でも、シンプルなモニタリング手法は選手のパフォーマンス維持とリカバリー促進に効果的である。

Ⅷ. コロナ禍におけるトレーニング負荷の管理

(Sandbakk Øyvind)

著者 (Sandbakk Øyvind) は、ノルウェー科学技術大学エリートスポーツ研究センターの所長教授であり、Granåsen Top Sport Center でノルウェーオリンピック委員会と働いている。そこでは、アスリート、コーチ、科学者が一体となってアスリートの成長を支える体制を構築している。科学者は研究成果を国際的な論文として発表し、査読や批評を受けることで、「エコーチャンバー現象」を避け、知見の妥当性を担保している。

COVID-19 によるロックダウン時に、多くの選手がトレーニング環境の制約や、モチベーション

低下に直面した⁵⁵⁾。しかし、リモート環境においても、コーチや科学者と選手との密接な協力が重要である。ビデオ会議やオンラインのトレーニングダイアリーといったデジタル技術を活用し、リアルタイムのフィードバックが可能となり、トレーニングの最適化につながった。ノルウェーは屋外活動が許可されていたため、クロスカントリースキーの選手は GPS や心拍計を装着することにより、彼らが他の選手や我々と顔を合わせることなく、パフォーマンスを比較することができた。最適なペース配分戦略について議論することができた。現在は慣性センサーと機械学習により、走法の自動分類も実現している^{47), 48)}。

最適な適応を引き出すには、パフォーマンス向上マインドセットが重要であり、特異性、負荷、回復のバランスが重要であり、セッションごとの評価や調整は外傷・障害予防にもつながる。トレーニングの最終目的は最適な適応を与えることであり、最適なトレーニングプログラムを与えることではないことを念頭に置く必要がある。

本講演では、コロナ禍における 2 つの具体的なトレーニングシナリオを提示した。

- シナリオ 1：海外遠征後の隔離期間（14 日）
後すぐに国内リーグに復帰しなければならない球技選手の場合、インターバルトレーニングで持久性能力を高め、ウェイトトレーニングで筋力維持に努める。また、傷害予防エクササイズも行う。リモートコーチングやチームビルディングイベントも有効である。
- シナリオ 2：ワールドカップに向けたヨーロッパ遠征中の持久系アスリートの場合、ホテルや屋外で可能な範囲で通常のトレーニングを継続する。慣性センサーや映像を用いたトラッキングでトレーニングの質を評価し、リモートでデブリーフィングを行う。用具のテストや精神面の準備にも時間を割くことができる。

隔離期間を制限ではなく、トレーニングの可能性を探る機会と捉えるべきである。具体的には、1) ブロックピリオダイゼーション⁴⁹⁾の活用等による期分けされたトレーニング、2) 通常のトレ

ニングでは十分な時間を割けないエクササイズで弱点を克服し、かつ強みを伸ばす、3) 選手とコーチのコミュニケーションをより密接に取り、相互理解を深めることが重要である。不確実な状況においても、選手が明確な目標を持ち計画的に取り組むことが、競技力の維持・向上の鍵となる。

IX.まとめ

本シンポジウムでは、コロナ禍という未曾有の事態における経験やエビデンスを基に情報提供を行い、制限のある環境の中で各体力要素や心身の健康を維持するための生理学的背景・手法、アスリートの現状を把握する必要性と具体的な方法、さらにはテクノロジーの活用について、様々な観点から紹介した。また、心理面やコミュニケーションの重要性についても強調した。加えて、複数の講演において、未曾有の事態から得た教訓を共通して取り上げた。コロナ禍に限らず、アスリートの競技パフォーマンスやウェルビーイングを最適化するためには、エビデンスやこれまでの経験を基に多角的な視点からアスリートを捉え、選手・コーチ・各専門家が協働し学際的にアプローチしていくことが求められる。

文献

- 1) Altmann S, Neumann R, Härtel S, Woll A, Buchheit M. Using submaximal exercise heart rate for monitoring cardiorespiratory fitness changes in professional soccer players: A replication study. *Int J Sports Physiol Perform*, 16 (8): 1096–1102, 2021.
- 2) Bickel CS, Cross JM, Bamman MM. Exercise dosing to retain resistance training adaptations in young and older adults. *Med Sci Sports Exerc*, 43 (7): 1177–1187, 2011.
- 3) Bongers CCWG, de Korte JQ, Eijsvogels T. Infographic. Keep it cool and beat the heat: Cooling strategies for exercise in hot and humid conditions. *Br J Sports Med*, 55 (11): 643–644, 2021.
- 4) Buchheit M. The 30–15 intermittent fitness test: Accuracy for individualizing interval training of young intermittent sport players. *J Strength Cond Res*, 22 (2): 365–374, 2008.
- 5) Buchheit M. Monitoring training status with hr measures: Do all roads lead to rome? *Front Physiol*, 5: 73, 2014.
- 6) Buchheit M, Chivot A, Parouty J, Mercier D, Al Haddad H, Laursen PB, Ahmadi S. Monitoring endurance running performance using cardiac parasympathetic function. *Eur J Appl Physiol*, 108 (6): 1153–1167, 2010.
- 7) Buchheit M, Gray A, Morin JB. Assessing stride variables and vertical stiffness with gps-embedded accelerometers: Preliminary insights for the monitoring of neuromuscular fatigue on the field. *J Sports Sci Med*, 14 (4): 698–701, 2015.
- 8) Buchheit M, Lacome M, Cholley Y, Simpson BM. Neuromuscular responses to conditioned soccer sessions assessed via GPS-embedded accelerometers: Insights into tactical periodization. *Int J Sports Physiol Perform*, 13 (5): 577–583, 2018.
- 9) Buchheit M, Morgan W, Wallace J, Bode M, Poulos N. Physiological, psychometric, and performance effects of the Christmas break in Australian football. *Int J Sports Physiol Perform*, 10 (1): 120–123, 2015.
- 10) Buchheit M, Morgan W, Wallace J, Bode M, Poulos N. Monitoring post-match lower-limb recovery in elite australian rules football using a groin squeeze strength test. *Sport Perf Sci Rep*, 7: 1–3, 2017.
- 11) Buchheit M, Simpson BM, Garvican-Lewis LA, Hammond K, Kley M, Schmidt WF, Aughey RJ, Soria R, Sargent C, Roach GD, Claros JCJ, Wachsmuth N, Gore CJ, Bourdon PC. Wellness, fatigue and physical performance acclimatisation to a 2-week soccer camp at 3600 m (ISA3600). *Br J Sports Med*, 47 (Suppl 1): i100–i106, 2013.
- 12) Buchheit M, Simpson BM, Lacome M.

Monitoring cardiorespiratory fitness in professional soccer players: Is it worth the prick? *Int J Sports Physiol Perform*, 15(10): 1437–1441, 2020.

13) Buchheit M, Simpson MB, Al Haddad H, Bourdon PC, Mendez-Villanueva A. Monitoring changes in physical performance with heart rate measures in young soccer players. *Eur J Appl Physiol*, 112(2): 711–723, 2012.

14) Buchheit M, Voss SC, Nybo L, Mohr M, Racinais S. Physiological and performance adaptations to an in-season soccer camp in the heat: Associations with heart rate and heart rate variability. *Scand J Med Sci Sports*, 21(6): e477–e485, 2011.

15) Burgomaster KA, Howarth KR, Phillips SM, Rakobowchuk M, Macdonald MJ, McGee SL, Gibala MJ. Similar metabolic adaptations during exercise after low volume sprint interval and traditional endurance training in humans. *J Physiol*, 586(1): 151–160, 2008.

16) Burke LM, Hawley JA, Jeukendrup A, Morton JP, Stellingwerff T, Maughan RJ. Toward a common understanding of diet-exercise strategies to manipulate fuel availability for training and competition preparation in endurance sport. *Int J Sport Nutr Exerc Metab*, 28(5): 451–463, 2018.

17) Cohen DD, Restrepo A, Richter C, Harry JR, Franchi MV, Restrepo C, Poletto R, Taberner M. Detraining of specific neuromuscular qualities in elite footballers during COVID-19 quarantine. *Sci Med Footb*, 5(sup1): 26–31, 2021.

18) Counts BR, Buckner SL, Dankel SJ, Jessee MB, Mattocks KT, Mouser JG, Laurentino GC, Loenneke JP. The acute and chronic effects of “NO LOAD” resistance training. *Physiol Behav*, 164: 345–352, 2016.

19) Dauty M, Menu P, Fouasson-Chailloux A. Effects of the COVID-19 confinement period on physical conditions in young elite soccer players. *J Sports Med Phys Fitness*, 61(9): 1252–1257, 2021.

20) Dello Iacono A, Ashcroft K, Zubac D. Ain’t just imagination! Effects of motor imagery training on strength and power performance of athletes during detraining. *Med Sci Sports Exerc*, 53(11): 2324–2332, 2021.

21) Duckworth AL, Peterson C, Matthews MD, Kelly DR. Grit: Perseverance and passion for long-term goals. *J Pers Soc Psychol*, 92(6): 1087–1101, 2007.

22) Dweck CS. Mindset: The new psychology of success. Random house, 2006.

23) Fernández-Valdés B, Sampaio J, Exel J, González J, Tous-Fajardo J, Jones B, Moras G. The influence of functional flywheel resistance training on movement variability and movement velocity in elite rugby players. *Front Psychol*, 11: 1205, 2020.

24) Fikenzer S, Kogel A, Pietsch C, Lavall D, Stöbe S, Rudolph U, Laufs U, Hepp P, Hagendorff A. SARS-CoV2 infection: Functional and morphological cardiopulmonary changes in elite handball players. *Sci Rep*, 11(1): 17798, 2021.

25) Font R, Irurtia A, Gutierrez J, Salas S, Vila E, Carmona G. The effects of COVID-19 lockdown on jumping performance and aerobic capacity in elite handball players. *Biol Sport*, 38(4): 753–759, 2021.

26) Gillen JB, Trommelen J, Wardenaar FC, Brinkmans NYJ, Versteegen JJ, Jonvik KL, Kapp C, de Vries J, van den Borne JJGC, Gibala MJ, van Loon LJC. Dietary protein intake and distribution patterns of well-trained dutch athletes. *Int J Sport Nutr Exerc Metab*, 27(2): 105–114, 2017.

27) Gonzalo-Skok O, Sánchez-Sabaté J, Tous-Fajardo J, Mendez-Villanueva A, Bishop C, Piedrafita E. Effects of direction-specific training interventions on physical performance and inter-limb asymmetries. *Int J Environ Res Public Health*, 19(3): 1029, 2022.

28) Gonzalo-Skok O, Tous-Fajardo J, Valero-Campo C, Berzosa C, Bataller AV, Arjol-Serrano JL, Moras G, Mendez-Villanueva A. Eccentric-overload training in team-sport functional performance: Constant bilateral vertical versus variable unilateral multidirectional movements. *Int J Sports Physiol Perform*, 12(7): 951–958, 2017.

29) Haddad C, Zakhour M, Bou kheir M, Haddad R, Al Hachach M, Sacre H, Salameh P. Association between eating behavior and quarantine/confinement stressors during the coronavirus disease 2019 outbreak. *Journal of Eating Disorders*, 8(1): 40, 2020.

30) Halson SL. Monitoring training load to understand fatigue in athletes. *Sports Med*, 44(2): 139–147, 2014.

31) Hickson RC, Foster C, Pollock ML, Galassi TM, Rich S. Reduced training intensities and loss of aerobic power, endurance, and cardiac growth. *J Appl Physiol*, 58(2): 492–499, 1985.

32) Hickson RC, Hagberg JM, Ehsani AA, Holloszy JO. Time course of the adaptive responses of aerobic power and heart rate to training. *Med Sci Sports Exerc*, 13(1): 17–20, 1981.

33) Hickson RC, Kanakis C, Davis JR, Moore AM, Rich S. Reduced training duration effects on aerobic power, endurance, and cardiac growth. *J Appl Physiol Respir Environ Exerc Physiol*, 53(1): 225–229, 1982.

34) Hyldahl RD, Chen TC, Nosaka K. Mechanisms and mediators of the skeletal muscle repeated bout effect. *Exerc Sport Sci Rev*, 45(1): 24–33, 2017.

35) Impey SG, Hearris MA, Hammond KM, Bartlett JD, Louis J, Close GL, Morton JP. Fuel for the work required: A theoretical framework for carbohydrate periodization and the glycogen threshold hypothesis. *Sports Med*, 48(5): 1031–1048, 2018.

36) Jeffries O, Waldron M. The effects of menthol on exercise performance and thermal sensation: A meta-analysis. *J Sci Med Sport*, 22(6): 707–715, 2019.

37) Joo CH. The effects of short term detraining and retraining on physical fitness in elite soccer players. *PLoS One*, 13(5): e0196212, 2018.

38) Lacome M, Simpson B, Buchheit M. Monitoring training status with player-tracking technology: Still on the road to rome. *Aspetar Sports Med J*, 7: 54–63, 2018.

39) Marquet L-A, Brisswalter J, Louis J, Tiollier E, Burke LM, Hawley JA, Hausswirth C. Enhanced endurance performance by periodization of carbohydrate intake: “Sleep low” strategy. *Med Sci Sports Exerc*, 48(4): 663–672, 2016.

40) Moras G, Fernández-Valdés B, Vázquez-Guerrero J, Tous-Fajardo J, Exel J, Sampaio J. Entropy measures detect increased movement variability in resistance training when elite rugby players use the ball. *J Sci Med Sport*, 21(12): 1286–1292, 2018.

41) Mujika I, Padilla S. Detraining: Loss of training-induced physiological and performance adaptations. Part I: Short term insufficient training stimulus. *Sports Med*, 30(2): 79–87, 2000.

42) Paravlic AH, Slimani M, Tod D, Marusic U, Milanovic Z, Pisot R. Effects and dose-response relationships of motor imagery practice on strength development in healthy adult populations: A systematic review and meta-analysis. *Sports Med*, 48(5): 1165–1187, 2018.

43) Parpa K, Michaelides M. The impact of COVID-19 lockdown on professional soccer players’ body composition and physical fitness. *Biol Sport*, 38(4): 733–740, 2021.

44) Philp A, Hargreaves M, Baar K. More than a store: Regulatory roles for glycogen in skeletal muscle adaptation to exercise. *Am J Physiol Endocrinol Metab*, 302(11): E1343–E1351, 2012.

45) Pla R, Bosquet L, McGibbon K, Mujika I, Aubry

A. Heart rate variability in elite swimmers before, during and after COVID-19 lockdown: A brief report on time domain analysis. *Appl Sci*, 11(17): 8106, 2021.

46) Plews DJ, Laursen PB, Stanley J, Kilding AE, Buchheit M. Training adaptation and heart rate variability in elite endurance athletes: Opening the door to effective monitoring. *Sports Med*, 43(9): 773–781, 2013.

47) Solli GS, Kocbach J, Bucher Sandbakk S, Haugnes P, Losnegard T, Sandbakk Ø. Sex-based differences in sub-technique selection during an international classical cross-country skiing competition. *PLoS One*, 15(9): e0239862, 2020.

48) Solli GS, Kocbach J, Seeberg TM, Tjønnås J, Rindal OMH, Haugnes P, Torvik PØ, Sandbakk Ø. Sex-based differences in speed, sub-technique selection, and kinematic patterns during low-and high-intensity training for classical cross-country skiing. *PLoS One*, 13(11): e0207195, 2018.

49) Solli GS, Tønnessen E, Sandbakk Ø. Block vs. Traditional periodization of HIT: Two different paths to success for the world's best cross-country skier. *Front Physiol*, 10: 375, 2019.

50) Spiering BA, Mujika I, Sharp MA, Foulis SA. Maintaining physical performance: The minimal dose of exercise needed to preserve endurance and strength over time. *J Strength Cond Res*, 35(5): 1449–1458, 2021.

51) Taylor M, Almquist N, Rønnestad B, Tjønna AE, Kristoffersen M, Spencer M, Sandbakk Ø, Skovreng K. The inclusion of sprints in low-intensity sessions during the transition period of elite cyclists improves endurance performance 6 weeks into the subsequent preparatory period. *Int J Sports Physiol Perform*, 16(10): 1502–1509, 2021.

52) Tous-Fajardo J, Gonzalo-Skok O, Arjol-Serrano JL, Tesch P. Enhancing change-of-direction speed in soccer players by functional inertial eccentric overload and vibration training. *Int J Sports Physiol Perform*, 11(1): 66–73, 2016.

53) United States Olympic and Paralympic Committee. Nutrition. <https://www.usopc.org/nutrition>. (2024年12月2日)

54) van Erp T, Foster C, de Koning JJ. Relationship between various training-load measures in elite cyclists during training, road races, and time trials. *Int J Sports Physiol Perform*, 14(4): 493–500, 2019.

55) Washif JA, Farooq A, Krug I, Pyne DB, Verhagen E, Taylor L, Wong DP, Mujika I, Cortis C, Haddad M, Ahmadian O, Al Jufaili M, Al-Horani RA, Al-Mohannadi AS, Aloui A, Ammar A, Arifi F, Aziz AR, Batuev M, Beaven CM, Beneke R, Bici A, Bishnoi P, Bogwasi L, Bok D, Boukhris O, Boullosa D, Bragazzi N, Brito J, Cartagena RPP, Chaouachi A, Cheung SS, Chtourou H, Cosma G, Debevec T, DeLang MD, Dellal A, Dönmez G, Driss T, Peña Duque JD, Eirale C, Elloumi M, Foster C, Franchini E, Fusco A, Galy O, Gastin PB, Gill N, Girard O, Gregov C, Halson S, Hammouda O, Hanzlíková I, Hassanmirzaei B, Haugen T, Hébert-Losier K, Muñoz Helú H, Herrera-Valenzuela T, Hettinga FJ, Holtzhausen L, Hue O, Dello Iacono A, Ihlainen JK, James C, Janse van Rensburg DC, Joseph S, Kamoun K, Khaled M, Khalladi K, Kim KJ, Kok L-Y, MacMillan L, Mataruna-Dos-Santos LJ, Matsunaga R, Memishi S, Millet GP, Moussa-Chamari I, Musa DI, Nguyen HMT, Nikolaidis PT, Owen A, Padulo J, Pagaduan JC, Perera NP, Pérez-Gómez J, Pillay L, Popa A, Pudasaini A, Rabbani A, Rahayu T, Romdhani M, Salamh P, Sarkar A-S, Schillinger A, Seiler S, Setyawati H, Shrestha N, Suraya F, Tabben M, Trabelsi K, Urhausen A, Valtonen M, Weber J, Whiteley R, Zrane A, Zerguini Y, Zmijewski P, Sandbakk Ø, Ben Saad H, Chamari K. Training during the COVID-19 lockdown: Knowledge, beliefs, and

practices of 12,526 athletes from 142 countries and six continents. *Sports Med*, 52(4): 933–948, 2022.

for training adaptation and body composition manipulation in track and field athletes. *Int J Sport Nutr Exerc Metab*, 29(2): 165–174, 2019.

56) Witard OC, Garthe I, Phillips SM. Dietary protein

Appendix

Lessons from COVID-19 Pandemic: Detraining and Retraining in High Performance Athletes

Kazuya Yamazaki¹⁾, Hana Tsubokura¹⁾, Daichi Yamashita¹⁾, Barry A. Spiering²⁾, Julio Tous-Fajardo³⁾, Louise Burke⁴⁾, Gloria Balague⁵⁾, Martin Buchheit^{6), 7)}, Øyvind Sandbakk⁸⁾, Takaki Yamagishi¹⁾, Iñigo Mujika^{9), 10)}

Keywords : COVID-19, training cessation, eccentric overload, nutrition strategies, psychological strategies

I . Introduction

From March 15 to March 31, 2022, the Japan High Performance Sports Center (JHPSC) held online the “High-Performance Sports Symposium—Lessons from the COVID-19 Pandemic: Detraining and Retraining in High-Performance Athletes”. The spread of COVID-19 imposed restrictions on the training activities of many athletes. Closure of training facilities, limitations on the use of practice venues, isolation measures due to infection or close contact, and quarantine protocols affecting international competitions led to insufficient training. With the aim of discussing performance changes due to training interruptions and strategies to maintain performance during the pandemic, the symposium provided information from various perspectives such as exercise physiology, nutrition, and psychology. This paper concisely summarizes the content of each lecture, outlining the restrictions and countermeasures for sports activities during the pandemic, to improve athletes' support during unforeseen pandemics.

II . Developing Resilient Athletes-Lessons from the COVID-19 Pandemic (Iñigo Mujika)

One of the main topics of this symposium was training reversibility. This principle states that acquired adaptations are progressively lost after training interruption, partially or completely, leading to a decline in performance commonly called detraining⁴¹⁾. Detraining caused by training cessation or reduction adversely affects cardiorespiratory, metabolic, and muscle functions. Even short-term interruptions can negatively affect maximal oxygen uptake ($\dot{V}O_{2\text{max}}$), muscle mass, and metabolic function. Therefore, it is important for athletes to maintain some level of training, focusing on keeping intensity high despite training volume reduction. Indeed, maintaining high training intensity can preserve $\dot{V}O_{2\text{max}}$ and muscle strength to some extent when facing decreased training frequency and duration³¹⁾. In particular, high-intensity interval training (HIIT) or sprints can minimize performance decline induced by reduced training volume^{37), 51)}. Psychological factors also play an important role, and using mental imagery (e.g., imagined muscle contractions) may help preserve muscle strength²⁰⁾.

¹⁾Japan Institute of Sports Sciences, ²⁾U. S. Army Research Institute of Environmental Medicine (USARIEM), ³⁾Tensegrity Performance, ⁴⁾Australian Catholic University, ⁵⁾University of Illinois Chicago, ⁶⁾Lille OSC, ⁷⁾Kitman Labs, ⁸⁾UiT The Arctic University of Norway, ⁹⁾University of the Basque Country, ¹⁰⁾Universidad Finis Terrae

Finally, training monitoring is crucial. Various methods are available to quantify training load and monitor adaptations^{30), 45), 54)}. By appropriately tracking training progress, it is possible to understand fatigue and changes in performance, to maximize the training effects in athletes.

III. Maintaining Physical Performance during the COVID-19 Pandemic/Quarantine (Barry A. Spiering)

This lecture discussed the minimal training load required to maintain endurance and muscle strength, based on the author's review⁵⁰⁾. Understanding minimal training requirements to maintain endurance and muscle strength during quarantine periods is particularly important to athletes, notably in restricted environments such as small Japanese hotel rooms.

Studies in non-athletes have revealed that reducing training frequency or duration does not decrease $\dot{V}O_{2\text{max}}$ acquired through training, but lowering training intensity does^{31), 32), 33)}. In contrast, in athletes, training twice a week is insufficient to maintain endurance performance^{19), 25)}, and about four sessions per week are required^{24), 43)}. Additionally, traditional endurance training and time-efficient, high-intensity interval training have similar effects on improving endurance capacity¹⁵⁾. These findings highlight the need to plan training flexibly, according to the environment and available time.

Studies in non-athletes have also shown that it is possible to maintain muscle strength and mass by training strength only once a week, but intensity must be kept as high as possible²⁾. An observational study targeting athletes during lockdown reported that a frequency of three times per week and a training volume of 4–5 sets per exercise are effective to maintain strength and muscle mass⁴³⁾. These results indicate that high intensity is crucial for preserving muscle strength and mass.

If exercise equipment is unavailable during quar-

tine, other modalities can help. For example, increasing intensity by performing bodyweight exercises unilaterally (using one leg or one arm instead of both) can be effective⁴³⁾. Plyometric exercises are also beneficial. In sports where arm flexion and extension are important, such as martial arts, muscle strength can be maintained by moving through the full range of motion with maximal effort, even without load¹⁸⁾. Moreover, motor imagery can also help in maintaining muscle strength⁴²⁾. During the COVID-19 pandemic, professional basketball players maintained muscle strength and power through motor imagery training²⁰⁾. Blood flow restriction training may also be effective with appropriate safety management, but the efficacy of using blood flow restriction training to maintain training adaptation requires additional research.

However, most of these studies have targeted non-athletes and it is unclear how they apply to high-performance athletes. High-performance athletes may require a greater training volume to maintain performance. Based on these findings, it is necessary to consider various strategies to train effectively during quarantine periods.

IV. Training during the COVID-19 Pandemic in Professional Soccer: Eccentric Overload and Injury Prevention (Julio Tous-Fajardo)

Due to COVID-19, many athletes were forced to train at home without access to facilities. The author was a training coach for a professional Italian soccer team during the lockdown. Although not a researcher, he has been involved in research on flywheel training. This lecture discussed research findings in eccentric overload training and specific methods implemented during the pandemic.

Overload in eccentric training brings rapid and sustained effects³⁴⁾. A comparison between eccentric overload training using a flywheel and conventional training showed significant improvements in athletic performance in the group training using a flywheel, es-

pecially in the 45° change of direction test⁵²⁾. Furthermore, performing more eccentric training in three dimensions improved the overall training effect further than training only in the vertical direction²⁸⁾. Applying different force vectors in eccentric training improved functional performance and asymmetry in basketball players, with horizontal jump ability showing significant improvement²⁷⁾. These results suggest that eccentric overload training effectively enhances athletes' change of direction ability, speed, and jumping ability, and can play an important role in providing specific functional adaptations in line with the resistance direction.

In rugby players, combining flywheel resistance with sport-specific tasks using the ball increased flexibility and movement variability⁴⁰⁾. Another study showed that a six-week training period under similar constraints increased movement speed significantly and improved variability²³⁾. These findings illustrate that eccentric overload training incorporating sport-specific constraints contributes to the diversity and speed adaptation of athletes' movements.

To help with training during the pandemic, information based on bed rest study findings was provided to players about the adverse effects of training interruptions, and resistance bands were distributed. Various training methods utilizing resistance available at home were introduced, and weekly progressive training was organized through online group and individual sessions to maintain training adaptations.

Finally, new skill acquisition methods were required from coaches during the lockdown. Implementing online training, creating motivational training environments, and preparing time-efficient equipment became necessary. Collaborating with physiotherapists was also important for managing players' health and improving performance. To maximize players' capabilities, adopting new technologies and training equipment was essential.

V. Nutrition Strategies during COVID-19 Pandemic/Quarantine (Louise Burke)

The COVID-19 pandemic has significantly impacted athletes' training environments and nutritional intake. This lecture focused on how athletes can manage their nutrition and support their training goals while isolated during the pandemic, incorporating the author's (Louise Burke) own experiences during strict lockdowns and quarantine life at the Tokyo Olympics.

Nutritional practices affect not only performance and long-term health in athletes, but also relate to cultural identity, social interaction, and the enjoyment of food. Isolation affects each athlete differently, presenting challenges such as limited space, lack of training facilities, and restricted food choices, making collaboration with various stakeholders essential. The nutritional needs of athletes during isolation can be classified into five key concepts:

1. Adjusting energy intake: Training in quarantine leads to reduced intensity and duration due to spatial constraints and lack of equipment, resulting in decreased energy expenditure. Thus, adjusting energy intake, especially carbohydrates, becomes essential. Using the Athlete's Plate⁵³⁾ allows athletes to visually understand and practice appropriate macronutrient intake ratios according to training volume.
2. Nutritional support for high-quality training: A variety of nutrition strategies can be used to reduce fatigue and promote performance. Methods include fueling appropriately before and after high-intensity sessions, carbohydrate supplementation during sessions with sports drinks, gels, or convenient foods, hydration strategies, body cooling techniques³⁾, and the use of menthol to adjust perceived temperature³⁶⁾.
3. Maximizing training adaptations: Adequate protein intake helps to promote optimal physiological adaptations to training stimuli⁵⁶⁾. A suggested spread of protein over the day includes 20–40 g at each

meal, in addition to post-training and before bed-time²⁶⁾. If the meals or snacks provided by the residential facility are not sufficiently high in protein, supplements may be considered.

4. Low glycogen training strategy (train low): To respond to reduced training volume, a “train low” strategy—intentionally training in a low-glycogen state—can be employed¹⁶⁾. Training in a low-glycogen state activates intracellular signaling pathways in muscle cells, enhancing training effects^{35), 44)}. Sleeping with low carbohydrate availability (“sleep low” cycle³⁹⁾) may also be effective, at least in lesser trained athletes.
5. Psychological support: Social isolation, boredom, and stress during quarantine increase the risk of overeating and poor food choices²⁹⁾. Maintaining regular lifestyle habits, managing food quantity and quality, engaging in social interactions online, and seeking psychological support as needed are important.

Finally, it's essential to view quarantine positively—as an opportunity to learn new skills and knowledge. Maintaining a forward-looking attitude and being innovative with meal strategies and training can help athletes in achieving their goals despite the challenging circumstances.

VI. Psychological Strategies during COVID-19 Pandemic/Quarantine (Gloria Balague)

This lecture introduced psychological strategies for athletes during the COVID-19 pandemic, emphasizing the importance of resilience and cognitive flexibility. To overcome difficulties during the pandemic and continue training, athletes and coaches should focus on resilience and cognitive flexibility.

The COVID-19 pandemic confronted athletes with unexpected difficulties, constraints, and uncertainties. The greatest lessons learned are the importance of adapting to change and generating new solutions. Specifically, resilience—to overcome challenges—and

cognitive flexibility—to be able to respond in new ways in order to achieve the desired goals amidst uncertainty—are indispensable. The importance of support systems from teams, coaches, and families was also reaffirmed. Athletes should focus on controllable or manageable elements like their own thoughts, emotions, and behaviors rather than uncontrollable external factors.

Resilience is the ability to bounce back and continue pursuing goals despite difficulties and adversity. Components of resilience include “mental toughness,” “grit,” and a “growth mindset.” Mental toughness is coping with pressure in competitive environments and challenging competition fearlessly. Grit involves persistently working towards long-term goals and is an important predictor of success²¹⁾. It includes courage to face failure, attention to detail, a strong will to achieve goals, and an optimistic attitude. A growth mindset is believing that intelligence and talent can be developed through effort²²⁾, empowering individuals to overcome difficult situations.

Cognitive flexibility is the ability to adapt thoughts and behaviors according to changing situations and to find new solutions. It is cultivated by not being bound by fixed ideas and embracing diverse perspectives. In uncertain situations like a pandemic, it is necessary to respond flexibly rather than sticking to conventional methods. Many athletes and coaches like routine, but routines should be flexible to adapt to unexpected changes. It requires being creative with training methods and materials.

To enhance resilience and cognitive flexibility, athletes can improve self-awareness, practice effective thinking methods (appropriate to situations), utilize imagery training, practice active rest, and implement varied rest methods. Coaches can practice reframing (changing the perception of situations), teach models of control and influence (focusing on what can be controlled), encourage creative solutions, support clear goal setting, provide affirmative feedback, and design

training environments that replicate challenging situations. These qualities should be included in training design before there is a need for them.

In conclusion, quarantine periods do not necessarily hinder goal achievement and can become opportunities for self-growth and skill acquisition. By effectively utilizing psychological strategies that strengthen resilience and cognitive flexibility, athletes and coaches can overcome difficult situations, grow, and achieve their goals despite the challenges posed by the pandemic.

VII. Assessing Seasonal Changes in Physical Performance through Field Tests (Martin Buchheit)

In this lecture, practical methodologies for evaluating physical performance using field tests in seasonal sports were introduced. Drawing on the author's (Martin Buchheit) own experiences, research findings, and field practices, Martin Buchheit explained how to utilize easily implementable and practical field tests through a three-stage monitoring framework.

To evaluate the overall response to training, simple questionnaires or apps are used to assess fatigue levels, freshness, and wellness. This is especially effective when managing many players. Several examples illustrated the usefulness of this approach to monitor changes in wellness scores in various situations such as altitude training and matches¹¹⁾, and during Christmas break⁹⁾.

To measure actual fitness levels, the 30–15 Intermittent Fitness Test⁴⁾ can be conducted in the field. However, maximal effort tests cannot be performed frequently. Alternatively, fitness levels can be easily evaluated by measuring heart rate during standardized submaximal intensity exercise (e.g., running at a constant speed)^{1), 12)}. Although the effects of temperature and humidity must be considered³⁸⁾, changes in heart rate reflect changes in endurance capacity^{13), 14)}.

Measuring lower limb stiffness using acc-

elerometers in GPS devices was proposed to monitor the neuromuscular status, especially fatigue and efficiency^{7), 8)}, in addition to jump tests¹⁷⁾ and hip adductor strength tests¹⁰⁾. This method allows evaluation of neuromuscular fatigue from data during practice or matches without conducting special tests.

Effective performance monitoring requires combining multiple indicators to comprehensively assess the athlete's condition rather than relying on a single metric. For example, heart rate variability (HRV) is a physiological indicator reflecting autonomic nervous system activity but is complex to interpret and influenced by factors like training intensity, type, and tapering periods. While HRV may increase with improved fitness levels⁶⁾, it can decrease due to sympathetic activation during high-intensity training despite fitness gains⁴⁶⁾. Additionally, recovery of HRV does not always coincide with the peak of muscle soreness, as shown in an ultra-trail race example⁵⁾. Therefore, considering multiple indicators is essential to accurately grasp an athlete's true recovery status.

In summary, monitoring tools and protocols should be appropriately selected based on available resources, type of sport, and individual athlete characteristics. Consistent measurement is key. By conducting continuous measurements using simple methods, practitioners can accurately establish an athlete's baseline and detect even slight changes early. Even when training is restricted, simple monitoring methods can help in effectively maintaining player performance and promote recovery.

VIII. Training Load Management during the COVID-19 Pandemic/Quarantine (Øyvind Sandbakk)

The author (Øyvind Sandbakk), Professor and Director of the Centre for Elite Sports Research at the Norwegian University of Science and Technology at the time, collaborated with the Norwegian Olympic Committee at Granåsen Top Sport Center. This collab-

oration involved working closely with athletes, coaches, and scientists to support athlete development. Scientists contributed by publishing their research findings internationally and undergoing peer review to avoid the “echo chamber effect”, thereby ensuring the validity of findings and their relevance for performance enhancement.

A performance enhancement mindset is vital for eliciting optimal adaptations, balancing specificity, load, and recovery. Session-by-session evaluation and adjustment also help prevent overtraining and injury. It is important to remember that the ultimate goal of training is to achieve optimal adaptation, not merely to deliver an optimal training program⁵⁵⁾.

During the COVID-19 lockdown, many athletes faced training constraints and declining motivation. However, close cooperation between coaches, scientists, and athletes remained crucial to optimize adaptations and improve performance, even in remote environments. Digital technologies such as video conferencing and online training diaries enabled real-time feedback, optimizing training. In Norway, where outdoor activities were permitted, cross-country skiers could monitor and compare training strategies, pacing strategies, and performances without face-to-face interaction by combining GPS and heart rate monitors. In addition, inertial sensors and machine learning allowed for the automatic classification of skiing techniques^{47), 48)}. Based on these data, discussions on individual physical and technical improvement areas, as well as optimal pacing strategies, were possible.

In this lecture, two specific training scenarios during the pandemic were presented:

- Scenario 1: For team sport players who had to return to domestic leagues immediately after a 14-day quarantine following overseas travel, efforts included enhancing endurance capacity by combining different models of aerobic interval and sprint-interval training and maintaining muscle strength through weight training. Injury preven-

tion exercises were also performed. Additionally, remote coaching and team-building events were effective strategies.

- Scenario 2: Endurance athletes traveling in Europe for the World Cup continued their usual training as much as possible in hotels and outdoors when restrictions were limiting. Training quality was evaluated using inertial sensors and video analysis, with remote debriefing sessions. Time was also allocated to equipment testing and mental preparation.

The quarantine period should be viewed not as a limitation but as an opportunity to explore training possibilities. Specifically, periodized training during such periods could also involve utilizing block periodization⁴⁹⁾ to structure training effectively. This approach helps address weaknesses, build strengths with exercises that often lack sufficient time in regular training, and enhance communication through closer interaction between athletes and coaches, deepening mutual understanding.

Even in uncertain situations, it is crucial for athletes to have clear goals and work systematically. This approach is key to maintaining and improving competitive performance despite the challenges posed by the pandemic.

IX. Summary

At this symposium, information was provided based on experiences and evidence from the unprecedented circumstances of the COVID-19 pandemic. Various perspectives were presented about the physiological background and methods for maintaining physical fitness and mental health in restricted environments, the necessity and specific methods for assessing and monitoring the current status of athletes, and the utilization of technology. Additionally, the importance of communication and psychological aspects was emphasized.

The multiple presentations collectively highlighted the lessons learned from unprecedented situations. To

optimize athletes' competitive performance and well-being, not only during the COVID-19 pandemic but also in general, it is essential to adopt a multifaceted perspective based on evidence and past experienc-

es. Collaboration among athletes, coaches, and various specialists, along with an interdisciplinary approach, is required to effectively support and enhance athletic performance and well-being.