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Automation of Routine Work in Athlete Support  
Using Deep Learning MR Image Analysis Support Application
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involved, and it takes a lot of time from tracing to 

cross-sectional area calculation. In high perfor mance 

sports, tailor-made assistance to athletes is required. In 

order to achieve this aim, it is important to create a 

system in which routine tasks including MR image 

tracing can be mechanized and more time can be spent 

on tasks that only support staffs can perform. In recent 

years, technologies related to artificial intelligence 

have improved dramat ical ly4）.  Among them, 

technologies using deep learning （from now on 

referred to as DL） that handle image processing are 

increasingly being used in the medical field7）. There-

fore, it is expected that the above issues can be solved 

using DL analysis methods. However, no applications 

are available on the market to solve this problem. The 

JISS has more than 4,000 sets （as of March 2020） of 

segmentation data and MR images that have been 

traced to MR images of top athletes by experts, which 

can be used to prepare supervised data for the 

Ⅰ．Introduction
1． Current status and challenges of muscle morpho-

metry using MRI.

　The Japan Institute of Sports Sciences （from now 

on referred to as JISS） conducts muscle morphometry 

as a fitness assessment for top athletes to improve their 

international competitiveness2）. In principle, muscle 

morphometry in JISS involves calculating the cross-

sectional area of the muscles and fat that make up the 

thighs and the lower trunk. In this measurement, the 

thighs and lower trunk are first imaged using a 

magnetic resonance imaging （MRI） machine. Then 

the boundaries of the muscle, fat, and bone compo-

nents on the MR image are manually traced （segmen-

ted）. The next step is to assign names to each of the 

divided components and calculate the cross-sectional 

area of each tissue. Although a series of tasks are 

carried out by well-trained support staffs （from now 

on referred as experts）, there is a lot of manual work 
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major and the tuberculum intercondylare. For the 

trunk, transverse gradient echo image （matrix 256×

256, field of view 380 mm, thickness 10 mm） was 

obtained at Jacoby’s line, which connects on the 

superior border of the iliac fossas. To avoid motion 

artifacts attri butable to breathing, MRI of the trunk 

was performed with the subjects holding their breath 

at the inspiratory position. Then, the obtained MR 

images was converted to 512×512 with interpolation 

processing. The dataset was used for DL training 

（Thighs: 806 images, lower trunk: 827 images） and 

evaluation （similarity assess ment images were not 

used for training. Thighs: 105 images, lower trunk: 

105 images）. Regarding the data set for evaluation, the 

images that were not suitable as evaluation images, 

including blurred images and arti fact images, were 

thinned out, resulting in 58 images for the thighs and 

79 images for the lower trunk. These MR images were 

manually labeled with labels traced and named by 

experts, with 11 labeling sites for the thighs （rectus 

femoris, vastus lateralis, vastus intermedius, vastus 

medialis,  sartorius, lateral hamstring, medial 

hamstring, adductors, gracilis, fats, and bones） and 12 

for the lower trunk （right and left rectus abdominis, 

Oblique, Psoas major, quadratus lumborum, erector 

spinae, as well as fats and bones）2）. The segmentation 

data for each site generated from the MR images and 

labels were paired to form a dataset. Fig. 1 shows 

examples of the images used in this study. These 

images were used to train and evaluate the model and 

study possible applications for automatic tracing using 

DL.

3．Interface

　To solve this research problem, it needs to be imple-

mented seamlessly in existing muscle morpho metry 

analysis systems. Therefore, the interface developed in 

this study was designed to invoke the DL tracing 

process instead of conventional tracing opera tions. In 

addition, it was decided to retain the functio nality that 

development of applications using DL. In addition, as 

these data were from top athletes, it is possible to 

develop applications specifically for top athletes. 

Therefore, the purpose of this study is to develop a 

DL-based MR image analysis support application 

dedicated for top athletes to create an environment in 

which support staffs can focus on support that cannot 

be mechanized.

Ⅱ．Development Overview
1．MR image segmentation models using DL.

　In this study, we applied the DL methods in seman-

tic segmentation to trace the MR images. Various 

models are available for semantic segmentation, in-

cluding DeepLab v3＋1） and U-Net5）. Among other 

features, DeepLab v3＋ is an extension of DeepLab v3 

with a multilayer neural network architecture for 

semantic segmentation, with the added feature of being 

able to effectively extract object boundaries. The 

accuracy of the segmentation process near the 

boundaries of the objects is considered high and suita-

ble for DL-based tracing. Therefore, this study exami-

nes the development of thighs and lower trunk seman-

tic segmentation algorithm using DeepLab v3＋ and 

its automatic rendering accuracy.

2．Dataset

　In this study, 911 images of the thighs and 932 

images of the lower trunk of several athletes taken at 

the JISS to date were used as supervised data. Consent 

for using images was obtained from all athletes at the 

time of their participation in the fitness assessment. 

This study was approved by the Ethics Committee of 

the Japan Institute of Sports Sciences （approval No. 

2022─054）. All MR images were acquired using a 

3-Tesla super conducting MRI device （Magnetom 

Verio, Siemens, Germany） and a body coil. Transverse 

fast spin-echo image （matrix 256×256, field of view 

240 mm, thickness 10 mm） of the thigh was obtained 

at 50％ position of the length between the trochanter 
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（“Labeling” in Fig. 1） was verified using overlap-

based metrics （Dice and Simpson coefficients）6）. The 

area of each muscle （group） and tissue was also 

validated by absolute error （the mean percentage of all 

samples of the absolute value of the error divided by 

the expert value）, systematic error （the mean percen-

tage of all samples of the DL value minus the expert 

value divided by the expert value）, and the intraclass 

correlation coefficient （ICC）. These metrics can be 

used to reveal areas of relatively low accuracy when 

segmenting the thighs and lower trunk by this model. 

This information would help support staff work more 

efficiently. The areas of the muscle groups in the lower 

trunk were summed on the left and right sides. The 

Adam3） was used as the optimization algorithm for 

training the network, and the hyper-parameters, such 

as the learning rate, were tuned, resulting in a learning 

rate of 0.0005％, iteration of 400,000, batch size of 1, 

and time taken to train: approximately 300 h for the 

thighs. For the lower trunk, the learning rate was 

0.0004％, iteration was 600,000, batch size was 1, and 

the time required for learning was approximately 300 

h.

Ⅲ．Verification results
　The image similarity results are listed in Table 1. 

The Dice and Simpson coefficient　s were above 97％ 

for both the thighs and the lower trunk. The validation 

results for the area of each muscle and tissue in the 

allows manual tracing to be carried out in the same 

way as before without using the DL tracing process. 

Fig. 2 shows the timing of the tracing process using 

DL. The DL calculation model can be specified in the 

configuration file, and the input/output files are stored 

in folders to allow for future changes in the model and 

imaging area. The GPU used for the study was an 

NVIDIA Quadro RTX5000, an Intel Xeon W-2135 

with a memory capacity of 64 GB.

4．Verification Methods

　The DL tracing results for the MR images in the 

evaluation dataset were compared with those obtained 

by the experts. The similarity of the traced images 

Fig. 1 Sample MR images used in this study.
a: MR image of the thighs and the corresponding 
tracing and labeling images.
b: MR image of the lower trunk and the corresponding 
tracing and labeling images.
Dashed lines indicate supervised data, and DL stands 
for deep learning. Gray: muscle; light gray: fats; white: 
blood vessels, nerves, internal organs, and others; 
black: bones.

a) Thigh

b) Lower trunk

Raw

Raw Tracing(Expert)

Tracing(Expert)

Tracing(DL)

Tracing(DL) Labeling(DL)

Labeling(DL)

Labeling(Expert)

Labeling(Expert)

Fig. 2 Flow of calculating the area of each muscle and 
tissue from MRI images.
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greater than 0.9.

Ⅳ．Conclusion
　After training the model using DeepLab v3＋ with 

the dataset held by JISS, the Dice and Simpson 

coefficients were above 97％ for both the thighs and 

lower trunk. In addition, both absolute and systematic 

errors were less than 5％ for both muscles and tissues, 

and the ICC was greater than 0.9. Based on these 

results, it can be concluded that segmentation using 

the model developed in this study was highly accurate. 

thighs and lower trunk are presented in Tables 2 and 3, 

respectively. For both muscles and tissues, absolute 

and systematic errors were less than 5％, with ICCs 

Table 1. Overlap coefficients （％） for traced images 
between machine learning and expert person for the 
thighs and lower trunk.

Table 2. Verification results for each muscle and tissue area of the thighs.

ICC

Mean SD Mean SD Mean SD Mean SD
Muscles 85.5 17.4 85.2 17.3 0.4 0.3 0.3 0.4 1.000
 Rectus femoris 5.3 1.3 5.2 1.3 2.1 1.3 1.3 2.1 0.995
 Vastus lateralis 15.3 3.7 15.3 3.7 1.1 0.7 0.3 1.3 0.999
 Vastus intermedius 13.4 2.9 13.5 3.0 1.2 0.9 -0.7 1.4 0.997
 Vastus medialis 8.6 2.1 8.6 2.1 1.8 1.3 -0.2 2.2 0.996
 Sartorius 2.2 0.6 2.2 0.6 4.6 3.5 3.2 4.8 0.980
 Lateral hamstring 8.1 1.7 8.0 1.7 1.7 1.4 0.8 2.1 0.995
 Medial hamstring 10.4 2.4 10.3 2.5 2.4 1.7 1.4 2.6 0.993
 Adductors 19.1 5.3 19.1 5.3 1.2 1.1 0.4 1.6 0.999
 Gracilis 2.9 0.7 2.9 0.7 3.6 5.2 0.7 6.3 0.977
Fats 22.1 10.9 22.2 10.9 2.2 2.5 -0.6 3.3 0.999
Bones 3.2 0.6 3.2 0.6 2.0 2.1 1.9 2.2 0.989
All 113.2 19.4 112.9 19.3 0.4 0.3 0.3 0.4 1.000

by DL
(cm2)

by expert
(cm2)

Absolute error
(%)

Systematic error
(%)

Table 3. Verification results for each muscle and tissue area of the lower trunk. The left and right values for 
the muscles were summed.

ICC

Mean SD Mean SD Mean SD Mean SD
Muscles 36.9 7.5 37.0 7.5 1.4 1.1 -0.4 1.8 0.997
 Rectus abdominis 3.3 0.8 3.3 0.8 3.7 2.7 -0.2 4.6 0.984
 Oblique 11.6 2.8 11.8 2.9 2.6 2.0 -1.9 2.7 0.990
 Psoas major 7.3 2.1 7.2 2.0 3.2 2.4 1.4 3.7 0.992
 Quadratus lumborum 3.2 0.8 3.2 0.7 4.7 4.4 -0.8 6.4 0.972
 Erector spinae 11.6 2.3 11.6 2.3 2.0 1.4 0.2 2.5 0.994
Fats 17.1 10.1 16.8 10.3 3.8 3.4 2.9 4.2 0.998
Bones 5.4 0.7 5.4 0.7 4.1 3.4 1.3 5.2 0.921
All 87.7 18.5 88.1 18.6 0.4 0.4 -0.4 0.4 1.000

Absolute error
(%)

Systematic error
(%)

by DL
(cm2)

by expert
(cm2)
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However, in the measurement of muscle morphology 

in top athletes, small errors may affect their training 

plan. Therefore, it is desirable to perform muscle 

morphometry measurements using this model for 

feedback after final confirmation by experts. 

Nevertheless, it was found that experts’ work time 

could be reduced by approximately one-third in 

subsequent operations. This indicates that the 

application developed in this study allowed us to 

create an environment in which more human resources 

could be invested in support. However, there is 

concern that the use of this application by untrained 

support staffs in muscle morphometry may inhibit the 

transmission of tracing techniques. As a counter-

measure, a system that allows those untrained support 

staffs to learn correct tracing by having the system 

judge the accuracy of the manual tracing results can be 

considered. Therefore, the operation of this system 

should be considered in the future.
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