垂直跳、CMJ(カウンタームーブメントジャンプ)、SJ(スクワットジャンプ) (無酸素性パワー)

測定の目的

多くのスポーツ種目では、重心の移動能力がパフォーマンスを決定する重要な要素の1つである.特に、短時間で大きく加速する下肢のパワーが重要となる。垂直跳は、跳躍高を測定することにより、下肢三関節の伸展パワーを評価するために行われる。

上肢の動作に制限を加えない「垂直跳」と上肢の動作を制限した(腰に手を添えた)垂直跳である「カウンタームーブメントジャンプ(以下 CMJ)」とを比較することで振込み動作の効果を 3.4を検討することができる.

また、下肢を屈曲させた姿勢から、反動動作を伴わない垂直跳びであるスクワットジャンプ(以下 SJ)と CMJ を比較することで反動動作の効果 1,2,5 を検討することができる。

垂直跳の跳躍高は、自体重に対して行われた鉛直 方向の仕事と等価である。したがって、垂直跳の跳 躍高と跳躍に費やした時間を測定することで、下肢 の伸展パワーを簡便に評価することができる。

測定法

1. 機器の準備

本測定では、マットスイッチ(図 1)と接続ボックス(図2:ディケイエイチ社製))及び専用のデータ収集用ボードを備えたPCを用いる。これらの機器を図2、3のように接続し、接続ボックスの電源を入れた後に、PCの電源を入れる。

図1 マットスイッチ

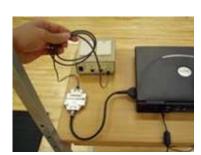


図 2 PC と接続ボックス

図3 マットスイッチと接続ボックスとの接続

2. 取り込みソフトウェアの準備

本測定では、ジャンプ測定専用ソフトウェア「Multi Jump Tester」を用いる。ソフトウェアの設定は、以下の手順で行う。

- ①PC 起動後、デスクトップのアイコンからソフトウェアを立ち上げる。
- ②メニューの中から「種類」→「垂直跳測定」を選択する。
- ③メニューの中から「編集」→「計測の設定」を選択し、ダイアログボックスを呼び出す(図4)。

「チャタリングキャンセル時間の設定 OFF」を200msecにする。測定回数の設定は、設定値以上に達すると、それまでの計測データを保存あるいは破棄しなければ、次の計測することができない。各選手のデータを PC に保存する必要がない場合は、測定回数を多めに設定しておき、必要に応じてデータを破棄しながら計測を繰り返した方が、スムーズに計測することができる。

図4 計測の設定

3. 測定の実際(垂直跳を例に)

(1)選手の準備

選手に対し、CMJの測定が、下肢、特に膝と足首に大きな負担のかかることから、十分なウォーミングアップが必要であることを伝える。ウォーミングアップでは、軽いジョギングもしくは自転車エルゴメータを用いたペダリングを行うことが望ましい。

(2) 教示内容

測定前に、選手に対し以下のことを教示する.

- ① 全力の垂直跳を2回測定する。
- ② 垂直跳は、反動動作および上肢の振り込み動作を自由に行ってよい。
- ③ 滞空時間から跳躍高を算出するため、マットの上で離地および着地を行う。
- ④ なるべく離地時と同じ姿勢で着地するよう心が ける(膝・股関節を屈曲させて接地することで、 滞空時間を稼がない)。

(3) 測定方法

- ①練習試行8割程度の努力度で2回練習を行わせて から、本測定を開始する。
- (a)選手をマットの上に立たせ、跳躍準備ができたことを確かめる。
- (b)PC 画面の右上にある「測定開始」ボタン (図5) をクリックする。
- (c)合図をかけて跳躍させる。声かけ:「用意,ハイ」 (e) 正しく跳躍が行われると,PC画面の左下(図6) に、各試行の結果が表示されるので、跳躍高をフィードバックする。

なお、見た目の跳躍高があるにも関わらず、跳躍高が 10 cm未満と異常に小さい場合は、エラー値が発生している可能性がある。跳躍前の抜重が大きい場合に生じやすい。極端な抜重動作については修正を行い、それでも計測できない場合は、チャタリングキャンセル時間の設定を、200msec 以上にして対処すると計測できる。

②本測定

全力での跳躍を2回行わせる。PC画面の左下(図6)に表示された各試行の跳躍高をフィードバックしながら、記録用紙にも記入する。

図5 計測開始ボタン

図6 出力データ

③CMJ および SJ について

CMJ および SJ の測定も、測定手順は垂直跳と同様であるが、動作の規定が異なるので、教示した動作で計測する。

○CMJ の動作規定

図7のように、手を腰に当てた姿勢から、沈み込んで(しゃがんでから)跳躍する。

図7 CMJの動作

○SJの動作規定

図8のように、手を腰に当て、膝を90°に曲げて 静止した姿勢から、反動動作が行われないように、 下肢三関節の伸展動作によって跳躍しているか確認 する。よく見られる間違いとして、膝の屈曲動作が 行われる場合と、体幹の前傾が直前に行われる場合 がある。跳躍前の動作に着目して、規定した動作で 行われているか評価する。

図8 SJの動作

測定データの評価法

図6に示した出力データのうち、跳躍高を使用す る。それ以外の数値は、本計測の副次的項目である ので使用しない。

本測定で算出される跳躍高は、離地時と接地時の 姿勢が同じであれば、身体重心の最高到達高を表し たものである (跳躍高=1/8・g・(滞空時間)²)。こ の数値は、タッチ式の垂直跳の計測方法と比べて、 10cm 程度低い可能性がある。タッチ式の計測方法 は、上肢や体幹の姿勢が統制しにくいため、跳躍高 が過大評価されるためである。

一般的に、跳躍高は、垂直跳>CMJ>SJの順 に高くなる傾向がある。SJよりも跳躍高が高くな るのは、反動動作による増強効果(伸張反射など)を利 用できるためであり、下肢の伸展速度及び力の立ち 上がりが速く、鉛直方向の力積が大きくなるためで ある。また、垂直跳は、CM J の反動動作に加えて、 腕の振込動作の影響を受け、跳躍高が高くなる。

しかし、反動動作の速度が適正でない場合、大き な力を長い時間発揮できなくなる場合もある。腕の 振込み動作についても、そのタイミングが適正でな ければ期待される効果は得られない。したがって、 CMJ>SJの関係が逆転したり、同程度であった りした場合には反動動作が有効に機能していないこ とが考えられる。また、垂直跳>CMJの関係が逆 転したり、同程度であったりした場合には、腕の振 込み動作が、有効に利用できていない可能性がある。

参照値

(1) 基礎データ

表1. 垂直跳び跳躍高

性別	カテゴリー側	定人数(人)	平均値	±	標準偏差	最小値	_	最大値
	シニア	807	53.2	±	6.8	25.7	_	79.0
男	ジュニア	384	51.2	±	7.2	26.5	_	79.2
_	シニア	518	39.0	±	4.1	19.0	_	64.2
女	ジュニア	336	39.4	\pm	4.8	23.5	-	56.3
							<u>(1</u>	単位:cm)

表2. CMJ (腕振りなしの垂直跳) 跳躍高

性別	リ カテゴリー!	定人数(人)	平均値	±	標準偏差	最小値	_	最大値
	シニア	562	47.8	±	5.7	22.1	_	70.0
男	ジュニア	317	44.2	\pm	6.3	25.6	_	66.5
女	シニア	316	34.1	\pm	4.0	11.6	_	55.5
Ø.	ジュニア	222	33.9	\pm	5.5	20.2	_	52.2

(単位:cm)

表3. SJ (腕振りなし、反動動作無し(膝関節90度から)) 跳躍高

性別	カテゴリー!『定人数(人)		平均値	±	標準偏差	最小値	_	最大値
男	シニア	459	42.9	±	5.1	21.2	_	63.9
Ð	ジュニア	284	41.8	±	4.8	23.5	_	61.4
_	シニア	248	31.8	±	3.9	14.6	_	49.9
女	ジュニア	197	32.1	±	5.1	18.4	_	46.8

(単位:cm)

(2)5段階評価の基準

表4 垂直跳水跳螺草

<u> </u>							
性別	男		女				
カテゴリー	シニア	ジュニア	シニア	ジュニア			
評価5	70.2	69.2	49.3	51.4			
評価4	63.4	62.0	45.2	46.6			
評価3	56.6	54.8	41.1	41.8			
評価2	49.8	47.6	37.0	37.0			
評価1	43.0	40.4	32.9	32.2			
				(単位:cm)			

表5 CMJ(腕振りなしの垂直跳)跳躍高							
	性別	!	男	女			
	カテゴリー	シニア	ジュニア	シニア	ジュニア		
	評価5	62.1	60.0	44.1	47.7		
	評価4	56.4	53.7	40.1	42.2		
	評価3	50.7	47.4	36.1	36.7		
	評価2	45.0	41.1	32.1	31.2		
	評価1	39.3	34.8	28.1	25.7		

(単位:cm)

表6 SJ(腕振りなし、反動動作なしジャンプ(膝角度90度から))跳躍高						
性別		男	女			
カテゴリー	シニア	ジュニア	シニア	ジュニア		
評価5	55.7	53.8	41.6	44.9		
評価4	50.6	49.0	37.7	39.8		
評価3	45.5	44.2	33.8	34.7		
評価2	40.4	39.4	29.9	29.6		
評価1	35.3	34.6	26.0	24.5		

(単位:cm)

参考文献

- 1) Bobbert, M. F., Gerritsen, K. GM., Litjens, MCA., and van Soest, A.J. (1996) Why countermovement jump height greater than squat jump height? Med. Sci. Sports Exerc. 28: 1402-1412.
- 2) Fukashiro, S. and Komi, P.V. (1987) Joint moment and mechanical power flow of the lower limb during vertical jump. Int. J. Sports Med. 8: 15-21.
- 3) Hara, M., Shibayama, A., Takeshita, D. and Fukashiro, S. (2006) The effect of arm swing on lower extremities in vertical jumping. J. Biomech. 39: 2503-2511.
- 4) Lees, A., Vanrenterghem, J. and Clercq, D.D. (2004) Understanding how an arm swing enhances erformance in the vertical jump. J. Biomec. 37: 1929-1940.
- 5) 佐川和則、禿正信、松本晃雄(1989) 垂直跳び の反動動作が下肢関節の機械的仕事へ及ぼす影 響. Jpn. J. Sports Sci. 8: 635-640.